EB1 Targets to Kinetochores with Attached, Polymerizing Microtubules

Jennifer S. Tirnauer, Julie C. Canman, E.D. Salmon, and Timothy J. Mitchison

Molecular Biology of the Cell
Vol. 13, 4308–4316, December 2002

Microtubule polymerization dynamics at kinetochores is coupled to chromosome movements, but its regulation there is poorly understood. The plus end tracking protein EB1 is required both for regulating microtubule dynamics and for maintaining a euploid genome. To address the role of EB1 in aneuploidy, we visualized its targeting in mitotic PtK1 cells. Fluorescent EB1, which localized to polymerizing ends of astral and spindle microtubules, was used to track their polymerization. EB1 also associated with a subset of attached kinetochores in late prometaphase and metaphase, and rarely in anaphase. Localization occurred in a narrow crescent, concave toward the centromere, consistent with targeting to the microtubule plus end–kinetochore interface. EB1 did not localize to kinetochores lacking attached kinetochore microtubules in prophase or early prometaphase, or upon nocodazole treatment. By time lapse, EB1 specifically targeted to kinetochores moving antipoleward, coupled to microtubule plus end polymerization, and not during plus end depolymerization. It localized independently of spindle bipolarity, the spindle checkpoint, and dynein/dynactin function. EB1 is the first protein whose targeting reflects kinetochore directionality, unlike other plus end tracking proteins that show enhanced kinetochore binding in the absence of microtubules. Our results suggest EB1 may modulate kinetochore microtubule polymerization and/or attachment.

INTRODUCTION

In mammalian cells, kinetochore microtubules are recruited to sites in the kinetochore outer plate by dynein and CENP-E (Rieder and Salmon, 1998). Factors yet to be characterized are critical for subsequent attachment and force generation, both at kinetochores and on chromosome arms (Howell et al., 2001; McEwen et al., 2001). Further regulation occurs upon biorientation of sister chromatids, to facilitate directional instability across the metaphase plate. Polymerization dynamics of the embedded kinetochore microtubule plus ends is coupled to chromosome movement, although how this relates to the dynamic instability of free microtubule plus ends is incompletely understood. For example, polymerization and depolymerization rates within the kineto-
EB1 Kinetochore Targeting

EB1 was cloned by its association with the carboxy-terminus of APC (Su et al., 1995). EB1 targets to microtubule plus ends independently of APC (Berrueta et al., 1998; Morrison et al., 1998), but APC targeting to microtubule plus ends requires EB1 (Askham et al., 2000; Mimori-Kiyosue et al., 2000a). The APC carboxy-terminus cooperates with EB1 functionally to stabilize microtubules (Nakamura et al., 2001). Two recent reports showed localization of APC to kinetochores in fixed cells (Fodde et al., 2001; Kaplan et al., 2001). Embryonic stem cells lacking APC were aneuploid, implicating APC in kinetochore-microtubule attachment. This was proposed to occur via EB1, as EB1-coated microtubule ends failed to localize to kinetochores in APC-null cells (Fodde et al., 2001; Kaplan et al., 2001). The finding that fission yeast lacking the gene for the EB1 homologue Mnl3 become aneuploid is also consistent with a role for EB1 in chromosome attachment (Beinhauer et al., 1997). While attracting EB1 to chromosome attachment implies stable association of EB1 with kinetochores or kinetochore microtubules. To address this issue, we used high resolution spinning disk confocal microscopy to image EB1 in living mitotic PtK1 cells.

MATERIALS AND METHODS

Proteins and Antibodies

Human EB1 (Berrueta et al., 1998) was cloned as a BamHI-HindIII fragment into PET28A (Novagen, Madison, WI) and confirmed by sequencing. Full-length 6-His-EB1 was expressed in BL21-PhysS cells (Novagen) and purified on nickel-agarose beads (QIAGEN, Valencia, CA) according to the manufacturer’s instructions, followed by dialysis into a sodium phosphate buffer lacking imidazole and flash freezing in small aliquots. Alexa488-labeled antibody to human CENP-F was a gift from Tsahai Tafari (University of North Carolina, Chapel Hill, NC). EB1 protein and CENP-F antibodies were labeled with Alexa594 (red emission) or Alexa488 (green emission) succinimidyl esters (Molecular Probes, Eugene, OR) according to the manufacturer’s instructions. P50prominin was prepared as described previously (Wittmann and Hyman, 1999).

Tissue Culture and Microinjection

PtK1 cells (American Type Culture Collection, Manassas, VA) were maintained in minimal essential medium (Sigma-Aldrich, St. Louis, MO) containing 10% fetal bovine serum, antibiotics, and antimycotics in a 37°C, 5% CO2 incubator and plated on 22-mm coverslips. To prevent EB1 adherence to glass, needles were sialinized and blocked with 0.1% BSA in 150 mM NaCl, 50 mM Tris-Cl pH 7.4, and 0.1% Triton X-100 for 1 min. Coverslips were mounted in 0.5% p-phenylenediamine (Sigma-Aldrich) in 20 mM Tris, pH 8.8, with 90% glycerol.

Immunofluorescence

Indirect immunofluorescence was performed on cells fixed in ice-cold methanol for 5 min, and rehydrated with 0.15 M NaCl, 0.02 M Tris-Cl pH 7.4, and 0.1% Triton X-100. Blocking and primary and secondary antibody incubations were done in AbDil (2% bovine serum albumin in Tris-buffered saline with 0.1% Triton X-100 and 0.1% sodium azide) at room temperature. EB1 was detected with a monoclonal antibody (Transduction Laboratories, Lexington, KY); CREST antigens were detected with human CREST immune serum. Incubations in primary antibodies were for 2 h at room temperature, followed by washing and secondary antibodies conjugated to fluorescein isothiocyanate or rhodamine (Jackson Immunoresearch Laboratories, West Grove, PA). DNA was stained with Hoechst 33342 (Sigma-Aldrich) at 1 μg/ml in 0.15 M NaCl, 0.02 M Tris-Cl pH 7.4, and 0.1% Triton X-100 for 1 min. Coverslips were mounted in 0.5% p-phenylenediamine (Sigma-Aldrich) in 20 mM Tris, pH 8.8, with 90% glycerol.

Microscopy and Image Analysis

Images were acquired using phase contrast transillumination or epi-fluorescence illumination from a 60-mW argon/krypton laser by a Yokogawa CS10 spinning disk confocal attachment (PerkinElmer Life Sciences, Boston, MA) with a cooled ORCA ER camera (Hamamatsu Photonics, Bridgewater, NJ) mounted on a TE300 inverted microscope (Nikon, Tokyo, Japan). Image acquisition and analysis were controlled by MetaMorph software (Universal Imaging, West Chester, PA). Phase contrast images were processed using the contrast inversion feature of MetaMorph; brightness and contrast were altered linearly to highlight chromosome edges. All data analysis and interpretation were done on raw images; some time-lapse sequences were processed with the unsharp mask algorithm for presentation.

Rates of kinetochore and spindle microtubule polymerization were calculated using the track points feature of MetaMorph software on images acquired at 7- and 3-s intervals, respectively. Spindle kymographs were generated from raw images of spindles acquired at 3-s intervals by using a 10-pixel-wide line and the average intensity method.

RESULTS

EB1 Binds Polymerizing Ends of Astral and Spindle Microtubules, and a Subset of Kinetochores

We microinjected Alexa488- or Alexa594-labeled EB1 into PtK1 cells at a low level that could be visualized without causing major perturbations in microtubule dynamics or mitotic progression, as assayed by microtubule polymerization rates and chromosome movements. In interphase cells, EB1 associated with polymerizing microtubule plus ends, as was observed for green fluorescent protein (GFP)-EB1 (Mimori-Kiyosue et al., 2000b) (our unpublished data). In mitotic cells, EB1 formed comets on polymerizing ends of astral and spindle microtubules (Figure 1). Although not addressed further herein, EB1 also localized to centrosomes (Figure 1), as has been observed for dynein/dynactin and APC (Howell et al., 2001; Kaplan et al., 2001).

The formation of EB1 comets on spindle microtubules suggested that labeled EB1 fluorescence could also be used to track the trajectories of individual microtubule plus ends within the spindle, a measurement that would be difficult to make using tubulin fluorescence. Kymographs (compressed montages of position vs. time) along the long spindle axis were constructed from time-lapse series of EB1 fluorescence in metaphase and anaphase spindles. These reproducibly track the trajectories of individual microtubule plus ends within the spindle, a measurement that would be difficult to make using tubulin fluorescence. Kymographs (compressed montages of position vs. time) along the long spindle axis were constructed from time-lapse series of EB1 fluorescence in metaphase and anaphase spindles. These reproducibly...
Figure 1. Labeled EB1 binds polymerizing ends of astral and spindle microtubules and a narrow region within the kinetochore attachment site. (a) Mitotic PtK1 cell microinjected with Alexa594-labeled EB1. One image from a time-lapse series is shown. Arrow, polymerizing astral microtubule with EB1 comet. Arrowhead, antipoleward moving kinetochore with EB1 crescent. Bar, 10 μm. (time-lapse at http://www.molbiolcell.org). (b) Enlargement of the indicated kinetochore crescent. (c) Enlargement of the indicated astral microtubule comet. (d) Fluorescence intensity line scans of the kinetochore and comet from b and c compared with a line scan through a 100-nm bead, to illustrate the point spread function of the optics (objective PSF). The intensities of the bead line scan were normalized to the maximum and minimum values for the kinetochore line scan.

showed EB1 targeting to spindle microtubules undergoing polymerization away from the associated spindle pole, but not to depolymerizing microtubules. Polymerizing microtubules sometimes crossed the spindle midline in metaphase (Figure 2, a and a’). and often extended past separated anaphase chromosomes into the central region of the spindle (Figure 2, b and b’). The mean spindle microtubule polymerization rate calculated by this kymograph method was ~8 μm/min (for metaphase spindles, 8.1 ± 2.3 μm/min, n = 80 microtubules/5 spindles; and for anaphase spindles, 7.7 ± 2.1 μm/min, n = 79 microtubules/4 spindles). Notably, this is close to the mean astral microtubule polymerization rate (for metaphase spindles, 10.8 ± 3.1 μm/min, n = 107 microtubules/7 spindles; and for anaphase spindles, 8.0 μm/min ± 2.5, n = 79 microtubules/4 spindles). These astral microtubule polymerization rates were similar to the rate of 12.8 ± 5.7 μm/min measured using GFP-α tubulin in mitotic LLC-PK cells (Rusan et al., 2001); rates of microtubule polymerization within the spindle have not been previously reported. The slight discrepancy between astral and spindle microtubule polymerization rates could represent a falsely elevated rate for astral microtubules, due to a small component of microtubule transport, or a falsely reduced rate for spindle microtubules, due to poleward flux. Our system did not allow direct testing of microtubule transport or flux because only polymerizing microtubule ends were visualized. Thus, our main finding is that microtubule polymerization was not greatly affected by the local spindle environment, and there was no evidence for a locally increased microtubule polymerization rate around chromosomes. A different assay will be required to test whether spindle microtubules showed increased growth persistence or altered depolymerization rates within the spindle.

In addition to the fluorescence on individual microtubule plus ends, EB1 formed a clearly demarcated spot of fluorescence at a subset of kinetochores. In some images, this could be resolved as a crescent with the concavity toward the chromosome (Figure 1). The width of the EB1 crescent was slightly greater than the microscope objective point spread function measured with a 100-nm fluorescent bead (Figure 1c), but much less than the 1- to 1.5-μm comets at the tips of astral microtubules (Figure 1b).

EB1 Localization to Kinetochore Microtubules

APC, dynein/dynactin, Lis1, and Clip-170 are reported to bind kinetochores during prometaphase and largely to disappear during metaphase, as kinetochores acquire their full number of kinetochore microtubules (Fodde et al., 2001; Hoffman et al., 2001; Kaplan et al., 2001). To determine the microtubule dependence of EB1 localization, we imaged cells microinjected with labeled EB1 during prophase. Unlike these other proteins, fluorescent EB1 was not seen on prometaphase or early prometaphase kinetochores (Figure 3a, t = 0 and 5 min), although it did associate with the plus ends of spindle microtubules essentially instantaneously (Figure 3, t = 5 min). EB1 localized to kinetochores during late prometaphase, at an average of 13.4 ± 3.9 min (n = 6 cells) after nuclear envelope breakdown (Figure 3, t = 8 min, arrow), indicating that EB1 localization required kinetochore microtubule attachment and maturation.

We tested whether kinetochore microtubule attachment was required transiently for the delivery of EB1 to kinetochores or persistently for its maintenance there. PtK1 cells growing asynchronously were treated with nocodazole for 1 h, and endogenous EB1 in mitotic cells was visualized by immunofluorescence. We used immunofluorescence for the CREST antigens (CENP-A, -B, and -C; Maney et al., 2000) to mark the kinetochores in the same cells. These images showed no evidence of EB1 localization to kinetochores upon microtubule depolymerization in all mitotic cells observed (Figure 3, b–d), consistent with the requirement for kinetochore microtubules to maintain EB1 localization.

4310 Molecular Biology of the Cell
EB1 Targeting to Kinetochores Depends on Microtubule Plus End Polymerization

EB1 was only present on a subset of attached kinetochores (Figures 4c and 5), so we tested whether microtubule polymerization was a distinguishing factor in kinetochore targeting. We acquired paired time-lapse images of EB1 fluorescence and phase contrast morphology to make correlations for several spindle configurations. For bioriented chromosomes on bipolar spindles (Figure 5a), mono-oriented chromosomes on bipolar spindles (Figure 5c), and mono-oriented chromosomes on spindles made monopolar by monastrol treatment (Mayer et al., 1999) (Figure 5d), kinetochores became brightly labeled with EB1 during antipoleward chromosome movement, corresponding to kinetochore microtubule polymerization, and lost EB1 fluorescence during poleward movement, corresponding to depolymerization. For separating sister chromosomes in anaphase, microtubule depolymerization predominated, but during the brief episodes of antipoleward movement associated with microtubule polymerization, EB1 targeted to kinetochores as well (Figure 5e). Thus, passage beyond the mitotic checkpoint did not affect EB1 targeting. The correlation between EB1 localization and chromosome movements is illustrated graphically in Figure 5b and dynamically in the supplemental movies. The velocity of kinetochore antipoleward movements was 1.5 ± 0.6 μm/min, similar to that seen in uninjected cells (Khodjakov and Rieder, 1996). We also saw instances of EB1 localizing to kinetochores on chromosomes pausing during metaphase, where poleward microtubule flux is associated with a microtubule polymerization rate of 0.5 μm/min (Mitchison, 1989). EB1 localization is thus the first specific marker of the polymerization status of kinetochore microtubules.

To verify that loss of EB1 from poleward-moving kinetochores was not due to a focal plane shift, we acquired paired images from cells coinjected with Alexa488-labeled EB1 and Alexa594-labeled antibodies to CENP-F. At the concentration used, these antibodies did not inhibit chromosome oscillations, progression to anaphase, or EB1 localization (our unpublished data). These showed that the EB1 signal disappeared during microtubule depolymerization even when the CENP-F antigen remained in the focal plane (our unpublished data).

EB1 Binds Kinetochores Independently of Dynactin

Dynactin accumulates at kinetochores in the absence of microtubules and are depleted upon microtubule capture, indicating a microtubule-independent binding site for dynactin/dynactin on the kinetochore (Dujardin et al., 1999).
al., 1998; Faulkner et al., 2000; Hoffman et al., 2001; Howell et al., 2001). EB1 interacts with dynein and the dynactin complex (Berrueta et al., 1999), binding directly to the p150
glued dynactin subunit (Tirnauer et al., 2002). We asked whether localization of EB1 to kinetochores depended on dynein/dynactin by coinjecting p50
dynamitin to disrupt the dynactin complex and dissociate dynein from kinetochores (Echeverri et al., 1996; Howell et al., 2001). P50
dynamitin injection induced the expected metaphase arrest, spindle widening, and separation of centrosomes from the ends of spindle fibers (Howell et al., 2001). In these p50
dynamitin-injected cells, EB1 localization to kinetochores was preserved, demonstrating it was independent of dynein/dynactin function (Figure 6).

Figure 3. EB1 is acquired at the kinetochore microtubule attachment site in late prometaphase and requires microtubule attachment to remain at kinetochores. (a) PtK1 cell microinjected with Alexa
594-labeled EB1 during prophase. Images from a time-lapse series of EB1 fluorescence (green) and phase contrast (contrast inverted and red) are shown: time (minutes) is from an arbitrary start point. Before nuclear envelope breakdown and during early prometaphase, no EB1 was seen at kinetochores (t = 0 and 5 min). By late prometaphase (t = 8 min), the first kinetochore (arrow) acquired EB1 fluorescence, and additional kinetochores (t = 19 min) subsequently acquired EB1 (t = 37 and 39 min). (b–d) EB1 requires microtubule attachment to persist at kinetochores. Indirect immunofluorescence of EB1 and CREST antigens in a PtK1 cell treated with nocodazole. EB1 (b), CREST (c) and merged image of EB1 (green) and CREST (red) (d). There is no EB1 at kinetochores. Bar, 10 μm.

Figure 4. Microinjected EB1 colocalizes with the kinetochore marker CENP-F and localizes similarly to endogenous EB1. (a–c) Metaphase PtK1 cell microinjected with Alexa
594-labeled EB1 and Alexa
488-labeled antibodies to CENP-F, imaged live. (a) EB1 fluorescence. (b) Anti-CENP-F fluorescence. (c) Merged image of EB1 (green) and CENP-F (red). (d and e) Immunofluorescence for EB1 and CREST antigens. EB1 (d), CREST (e), and merged image of EB1 (green) and CREST (red) (f). The focal plane chosen to highlight kinetochores in d–f does not contain the spindle poles, but these showed bright EB1 immunofluorescence in the original z-series of this cell. Arrows, EB1 colocalization with kinetochore marker. Bars, 10 μm.
DISCUSSION

Unlike Other Plus End Tracking Proteins, EB1 Targets to Kinetochore Microtubule Polymerization

Although the microtubule polymerization requirement for EB1 at kinetochores is not surprising based on targeting to other populations of polymerizing microtubules, it contrasts with the other microtubule plus end tracking proteins characterized to date, such as CLIP-170, Lis1, and dynein (Dujardin et al., 1998; Faulkner et al., 2000; Hoffman et al., 2001). These bind kinetochores independently of microtubules; in fact, their binding is enhanced upon the microtubule loss induced by nocodazole treatment (Hoffman et al., 2001).
EB1 Targeting to Kinetochore Microtubule Plus Ends Compared with Free Microtubule Plus Ends

Kymographs of EB1 fluorescence revealed its localization to polymerizing kinetochore, spindle, and astral microtubules, consistent with a similar mechanism of targeting in all cases. EB1 is thus a valuable marker for tracking microtubule polymerization rates at all of these sites. Although the localization pattern is similar, the crescent spot at the kinetochore is compact compared with the extended comet tail seen on the ends of nonkinetochore microtubules. The spot on kinetochore microtubules could reflect a cluster of comets with very short tails, because kinetochore microtubules polymerize approximately ninefold slower than astral microtubules. Alternatively, signaling proteins may reduce the length of the EB1 signal at kinetochore microtubules. In support of this idea, we found that EB1 comets were shorter in mitotic tissue culture cells compared with interphase cells (Tirnauer and Mitchison, unpublished data), possibly reflecting shifts in the kinase-phosphatase balance during mitosis.

Two models, not mutually exclusive, could account for microtubule polymerization-specific EB1 localization to kinetochores. EB1 might bind to polymerizing kinetochore microtubules, or it might bind to a kinetochore component(s) in a manner that is coregulated with kinetochore behavior. Currently, it is unknown whether conversion between microtubule polymerization and depolymerization at kinetochores is controlled by chemical changes (such as phosphorylation events) or whether the changes are purely structural. Detailed analysis of EB1 targeting could help address this fundamental issue of kinetochore mechanism. With respect to EB1 targeting, our data suggest that polymerizing ends of kinetochore microtubules resemble polymerizing ends of free microtubules, and depolymerizing microtubule ends at kinetochores resemble depolymerizing free microtubule ends. These parallels support the hypothesis that directional instability of kinetochores is based on the dynamic instability of microtubule plus ends.

Potential EB1 Functions at the Kinetochore

We envision three potential roles for EB1 at the kinetochore. First, EB1 may affect the polymerization dynamics of microtubules in the kinetochore bundle. For example, it could reduce the frequency of catastrophes on kinetochore microtubules, as it does for cytoplasmic microtubules in yeast (Tirnauer et al., 1999) and for astral microtubules in Xenopus egg extracts (Tirnauer et al., 2002). Such an effect would explain a paradox in the literature: the drastically reduced turnover of kinetochore microtubules compared with free microtubules in vivo (Mitchison and Kirschner, 1985; Zhai et al., 1995), but the enhanced dynamic instability of microtubules that interact with kinetochores in vitro (when EB1 is not present) (Hyman and Mitchison, 1990). A recent study showed that the ability of EB1 to promote polymerization of microtubules in vitro was dependent on the APC carboxy terminus (Nakamura et al., 2001). This result raises the possibility that EB1 at microtubule plus ends might not fully stabilize microtubules until it interacts with an activator (APC or another protein) at the kinetochore. Such regulation would allow microtubules that are not captured to undergo catastrophes, while facilitating stabilization of those that do attach. In addition to reducing catastrophes for individual microtubules, regulating polymerization of kinetochore microtubules could help synchronize their dynamic instability, an inherently stochastic process that must be coordinated within the kinetochore microtubule bundle for chromosome oscillations to occur.

A second potential function for EB1 at kinetochores is in microtubule end-on attachment. EB1 has been proposed to mediate binding of kinetochore microtubules to kinetochores via APC, because APC-null cells become aneuploid, and in fixed preparations colocalization of EB1 with APC is lost (Fodde et al., 2001; Kaplan et al., 2001). This is an attractive model, because the budding yeast EB1 homologue Bim1p, in addition to promoting microtubule polymerization, links microtubule ends to the cortical protein Kar9p at the bud tip (Tirnauer et al., 1999; Korinek et al., 2000; Lee et al., 2000; Miller et al., 2000). Although they are not clear sequence homologues, there may be functional overlap between Kar9p and APC (Mimori-Kiyosue and Tsukita, 2001; Schuyler and Pellman, 2001). Based on our observations, a protein–protein interaction involving EB1 would not be able to provide continuous kinetochore-microtubule attachment, because EB1 only targets to kinetochores during microtubule polymerization-specific EB1 localization to kinetochores. EB1 might bind to polymerizing kinetochore microtubules, or it might bind to a kinetochore component(s) in a manner that is coregulated with kinetochore behavior. Currently, it is unknown whether conversion between microtubule polymerization and depolymerization at kinetochores is controlled by chemical changes (such as phosphorylation events) or whether the changes are purely structural. Detailed analysis of EB1 targeting could help address this fundamental issue of kinetochore mechanism. With respect to EB1 targeting, our data suggest that polymerizing ends of kinetochore microtubules resemble polymerizing ends of free microtubules, and depolymerizing microtubule ends at kinetochores resemble depolymerizing free microtubule ends. These parallels support the hypothesis that directional instability of kinetochores is based on the dynamic instability of microtubule plus ends.

Potential EB1 Functions at the Kinetochore

We envision three potential roles for EB1 at the kinetochore. First, EB1 may affect the polymerization dynamics of microtubules in the kinetochore bundle. For example, it could reduce the frequency of catastrophes on kinetochore microtubules, as it does for cytoplasmic microtubules in yeast (Tirnauer et al., 1999) and for astral microtubules in Xenopus egg extracts (Tirnauer et al., 2002). Such an effect would explain a paradox in the literature: the drastically reduced turnover of kinetochore microtubules compared with free microtubules in vivo (Mitchison and Kirschner, 1985; Zhai et al., 1995), but the enhanced dynamic instability of microtubules that interact with kinetochores in vitro (when EB1 is not present) (Hyman and Mitchison, 1990). A recent study showed that the ability of EB1 to promote polymerization of microtubules in vitro was dependent on the APC carboxy terminus (Nakamura et al., 2001). This result raises the possibility that EB1 at microtubule plus ends might not fully stabilize microtubules until it interacts with an activator (APC or another protein) at the kinetochore. Such regulation would allow microtubules that are not captured to undergo catastrophes, while facilitating stabilization of those that do attach. In addition to reducing catastrophes for individual microtubules, regulating polymerization of kinetochore microtubules could help synchronize their dynamic instability, an inherently stochastic process that must be coordinated within the kinetochore microtubule bundle for chromosome oscillations to occur.
EB1 Kinetochore Targeting

bule polymerization. This result raises the possibility that separate anchoring complexes could associate with polymerizing vs. depolymerizing kinetochore microtubules, although it does not establish whether EB1 is a component of such a complex. If it were, EB1 might preferentially bind to newly added tubulin subunits at the tips of polymerizing kinetochore microtubules and therefore continually bias kinetochore binding to the most recently added subunits.

A final potential function for EB1 at the kinetochore, distinct from microtubule stabilization and attachment, may be to tag the microtubule end, allowing other proteins to find and distinguish this unique site. For proteins that specifically need to act at attached kinetochores, binding polymerizing microtubule plus ends might be more advantageous than binding to the microtubule-independent kinetochore proteins. Our studies do not determine whether EB1 performs some, all, or none of the proposed roles at the vertebrate kinetochore. Determining EB1 function at kinetochores is likely to require EB1 mutations that differentially affect its kinetochore targeting, or perturbation of critical EB1 binding partners at the kinetochore.

ACKNOWLEDGMENTS

We thank Tsahai Tafari for the generous gift of labeled antibodies, Paul Maddox for expert microscopy advice, and members of the Mitchison laboratory for helpful discussions and comments on the manuscript. This work was supported by National Institutes of Health grants K08 DK-02578 and R03 DK 58766 (to J.S.T.), GM-24364 (to E.D.S.), GM-39565 (to T.J.M.), and a Universal Imaging Corporation Fellowship to the Cell Division Group at the Marine Biological Laboratory, Woods Hole, MA.

REFERENCES

tochore in vitro. II. Microtubule capture and ATP-dependent trans-

Morrison, E.E., Wardleworth, B.N., Askham, J.M., Markham, A.F.,
and Meredith, D.M. (1998). EBI, a protein which interacts with the
APC tumor suppressor, is associated with the microtubule cytoskel-
eton throughout the cell cycle. Oncogene 17, 3471–3477.

EBI and APC interaction in the regulation of microtubule polymer-

(1993). CENP-F is a ca 400 kDa kinetochore protein that exhibits a
226.

ejection forces dictate chromosome position on the vertebrate mi-

Rieder, C.L., and Salmon, E.D. (1998). The vertebrate cell kineto-

Rusan, N.M., Fagerstrom, C.J., Yvon, A.-M.C., and Wadsworth, P.
(2001). Cell cycle-dependent changes in microtubule dynamics in
living cells expressing green fluorescent protein-α tubulin. Mol.
Biol. Cell 12, 971–980.

ing proteins”: the end is just the beginning. Cell 105, 421–424.

Su, L.-K., Burrell, M., Hill, D.E., Gyuris, J., Brent, R., Wilshire, R.,
novel protein EBI. Cancer Res. 55, 2972–2977.

Role of dynein, dynactin, and CLIP-170 interactions in Lis1 kineto-

Tirnauer, J.S., and Bierer, B.E. (2000). EBI proteins regulate micro-
tubule dynamics, cell polarity, and chromosome stability. J. Cell
Biol. 149, 761–766.

EBI-microtubule interactions in xenopus egg extracts: role of EBI in
microtubule stabilization and mechanisms of targeting to microtu-

Tirnauer, J.S., O’Toole, E., Berrueta, L., Bierer, B., and Pellman, D.
(1999). Yeast Bim1p promotes the G1-specific dynamics of microtu-

as a tool to examine the role of dynactin in intracellular processes.
Methods Cell Biol. 61, 137–143.

microtubule dynamics at the metaphase-anaphase transition. J. Cell
Biol. 131, 721–734.