Anchoring of Protein Kinase A-Regulatory Subunit IIα to Subapically Positioned Centrosomes Mediates Apical Bile Canalicular Lumen Development in Response to Oncostatin M but Not cAMP

Kacper A. Wojtal, Dick Hoekstra, and Sven C.D. van IJzendoorn

Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands

Submitted August 21, 2006; Revised April 19, 2007; Accepted May 1, 2007
Monitoring Editor: Ben Margolis

Oncostatin M and cAMP signaling stimulate apical surface-directed membrane trafficking and apical lumen development in hepatocytes, both in a protein kinase A (PKA)-dependent manner. Here, we show that oncostatin M, but not cAMP, promotes the A-kinase anchoring protein (AKAP)-dependent anchoring of the PKA regulatory subunit (R)IIα to subapical centrosomes and that this requires extracellular signal-regulated kinase 2 activation. Stable expression of the RII-displacing peptide AKAP-IS, but not a scrambled peptide, inhibits the association of RIIα with centrosomal AKAPs and results in the repositioning of the centrosome from a subapical to a perinuclear location. Concomitantly, common endosomes, but not apical recycling endosomes, are repositioned from a subapical to a perinuclear location, without significant effects on constitutive or oncostatin M-stimulated basolateral-to-apical transcytosis. Importantly, however, the expression of the AKAP-IS peptide completely blocks oncostatin M-, but not cAMP-stimulated apical lumen development. Together, the data suggest that centrosomal anchoring of RIIα and the interrelated subapical positioning of these centrosomes is required for oncostatin M-, but not cAMP-mediated, bile canalicular lumen development in a manner that is uncoupled from oncostatin M-stimulated apical lumen-directed membrane trafficking. The results also imply that multiple PKA-mediated signaling pathways control apical lumen development and that subapical centrosome positioning is important in some of these pathways.

INTRODUCTION

Polarized hepatocytes, like all epithelial cells, display distinct plasma membrane domains, an apical plasma membrane domain facing the bile canalicular lumen, and a basolateral plasma membrane domain facing the space of Disse. Concomitant with cell surface polarity, also the cell interior displays a polarized organization. A dense cortical actin network is assembled beneath the apical surface and actin filaments extend into apical microvilli with their barbed ends facing the microvilli tips. In addition, part of the microtubule cytoskeleton is oriented parallel to the apical-basal axis with their minus and plus ends facing the apical and basolateral surface, respectively. The cytoskeleton organization influences the position of the centrosome (Burakov et al., 2003), which in various epithelial cells including intestinal Caco-2, kidney Madin-Darby canine kidney (MDCK), and hepatic WIF-B cells, is typically oriented toward the apical surface (Buendia et al., 1990; Meads and Schroer, 1995; Salas, 1999). Polarized positioning of the centrosome is thought to play a role in the establishment of epithelial cell polarity (Zeligs, 1979; Dylewski and Keenan, 1984; Houliston et al., 1987; Rizzolo and Joshi, 1993) and neuronal polarity (de Anda et al., 2005; Higginbotham et al., 2006). A subapical position of the centrosome may be important for the polarized orientation of microtubule-associated organelles such as the Golgi apparatus and recycling endosomes, and, in this way, facilitate the polarized, at least apical, trafficking of proteins and lipids from these intracellular organelles to the appropriate surface domain (Wald et al., 2003; Musch, 2004). However, kidney epithelial MD-CKII-J cells, which display a persistent perinuclear centrosome position and microtubule organization, do not show defects in polarity development or protein delivery from the Golgi apparatus to the different membrane domains, arguing for a nonessential role for centrosome position and microtubule organization in cell polarity development (Grindstaff et al., 1998). In the Caenorhabditis elegans oocyte, however, the centrosome is critical to initiate cell polarity but independent of its role as a microtubule nucleator. Here, the centrosome was proposed to provide a specific but unidentified polarity signal (Cowan and Hyman, 2004), which is in agreement with the emerging view of the centrosome as a signaling unit (for review, see Diviani and Scott, 2001; Lange, 2002). Whether the centrosome and its subcellular positioning play a general role in the development of (epithelial) cell polarity thus remains uncertain.

Hepatocyte polarity development is regulated by kinases, often in response to extracellular signals. For example, activation of the serine/threonine protein kinase C (PKC) in well-differentiated human hepatoma HepG2 cells or in iso-
lated rat hepatocyte couplets with phorbol esters or vaso-
pressin, respectively, perturbs hepatocyte polarity and re-
sults in a loss of bile canalicular lumens and a redistribution
of bile canalicular markers (Zegers and Hoekstra, 1997;
Roma et al., 1998; Kubitz et al., 2001). By contrast, the mam-
alian orthologue of Caenorhabditis elegans Par-1 (EMK1;
MARK2), which controls microtubule dynamics, is required
for the development of apical bile canalicular lumens in rat
hepatic WIF-B9 cells (Cohen et al., 2004). Phosphoinositide
3-kinase and the p38 mitogen-activated protein (MAP) ki-
nase control tauro(ursodeoxy)cholate-induced trafficking of
ATP-dependent transporters to the canalicular surface in rat
liver, isolated hepatocytes, and hepatic cell lines (Misra et al.,
1998; Sai et al., 1999; Kubitz et al., 2004), whereas Vps34p,
a class III phosphoinositide 3-kinase, prevents the internaliza-
tion of canalicular proteins from the canalicular surface
(Tuma et al., 2001), in this way contributing to the functional
composition of the apical lumen surface. Activation of
cAMP-dependent serine/threonine protein kinase A (PKA)
in WIF-B(9) cells, isolated hepatocyte couplets, or HepG2
cells with 1) forskolin, a compound produced by Coleus
forskohlii that activates adenyl cyclase to increase the intra-
cellular levels of cAMP; 2) glucagon, a pancreatic hormone
that similarly activates hepatic adenyl cyclase to raise
cAMP concentrations; 3) the cAMP phosphodiesterase in-
hibitor 3-isobutyl-1-methylxanthine, or 4) cell-permeable
stable cAMP analogues generally stimulates the polarized
delivery of apical bile canalicular proteins and lipids and the
concomitant development of apical bile canalicular lumens
(Zegers and Hoekstra, 1997; van IJzendoorn and Hoekstra,
1999; Roma et al., 2000; Kagawa et al., 2002; Gradilone et
al., 2003). In addition, PKA protects hepatocytes against radical
oxygen species-induced tight junction impairment (Perez
et al., 2006), thus preserving separate apical and basolateral
environments. Also, when freshly cultured HepG2 cells are
exposed to the PKA inhibitor H89, further cell polarity de-
velopment is underscored by the observation that baso-
laterally circulating oncostatin M (OSM), an interleukin-6
family cytokine involved in fetal liver maturation (Kamiya
et al., 2001), stimulates membrane traffic toward the bile can-
alicular plasma membrane and bile canalicular lumen de-
velopment in a PKA-dependent manner (van der Wouden et al.,
2002).

How oncostatin M- and cAMP/PKA-mediated signaling
routes intermingle is not known. Clearly, a coordinated spatial
germination of signaling within the cellular space is pivotal
for a basolaterally localized stimulus to promote the de-
velopment of an apical lumen, which are about ten mi-
crons apart. This is, for example, illustrated by the recruit-
ment of the signal transducing receptor subunit gp130 into
lipid rafts at the basolateral surface of HepG2 cells in re-
sonse to oncostatin M (van der Wouden et al., 2002). As for
PKA, there are two isoforms, PKA type I and type II, both of
which are holoenzymes consisting of two regulatory (Ria/β
or RIIa/β, respectively) and two catalytic subunits (C). The
autoinhibitory interaction between R and C is relieved when
cAMP, produced by adenyl cyclase, binds to the regula-
tory subunits, triggering their dissociation from the catalytic
subunits and subsequent phosphorylation of target proteins
by C. In HepG2 and other cells, most PKA type II is an-
chored at specific organelles and cellular structures through
A-kinase anchoring proteins (AKAPs), which, in conjunction
with (phosphodiesterase-)regulated spatial cAMP gradients
and other proteins tethered to AKAPs, provide an important
level of control to ensure specificity of cAMP/PKA-medi-
ated signal transduction (Michel and Scott, 2002). It has
been shown that exposure of HepG2 cells to oncostatin M does
not result in a detectable increase in cAMP levels or a
pronounced increase in overall PKA activation, which is in
striking contrast to treatment of the cells with forskolin or
cAMP analogues. Intriguingly, however, it was noticed that
oncostatin M signaling stimulated the association of the
regulatory subunit of type II PKA (PKA-RIIα) with the
centrosomal region (van der Wouden et al., 2002). In this study,
we have examined the role of PKA-RIIα anchoring at cen-
trosomes in hepatocyte polarity development.

MATERIALS AND METHODS

Cell Culture

Human hepatoma HepG2 cells (American Type Culture Collection, Manas-
sas, VA) were grown in DMEM supplemented with l-glutamine, 10% fetal
calf serum (FCS), and penicillin/streptomycin, as described previously (Zegers
et al., 1997). HepG2 cells stably expressing the GFP/V5/His-tagged AKA-AS
peptide or scrambled peptide (GFP-QDVEIQLKAKYNNKLIL/V5-His) (pro-
vided by John Scott (Howard Hughes Medical Institute, Vollum Institute,
Oregon Health & Science University, Portland, OR 97239) and described in
Alto et al. (2003)) were created as described previously (Wojtal et al., 2006).
Stable transfectants were cultured in medium supplemented with 800 μg/ml
Genetin (G-418, Invitrogen, Carlsbad, CA). For immunofluorescence ex-
periments, cells were plated onto ethanol-sterilized uncoated glass coverslips.

Determination of Cell Proliferation

Parental HepG2 and AKA-AS–expressing HepG2 cells were plated at a concen-
tration of 500,000 cells per coverslip (20 × 20 mm) and counted every 24 h using a Bürker chamber. The average of two different countings is
depicted.

Flow Cytometry

Cells were washed with phosphate-buffered saline (PBS) and with PBS/0.1%
EDTA, and incubated in PBS/0.1% EDTA at 37°C during 5 min. The cells
were resuspended to obtain a single cell solution and centrifuged at 1000 rpm
for 5 min. After washing with PBS/1% FCS, the cell pellet was resuspended
in 100 μl of PBS. One milliliter of –20°C absolute ethanol was added using a
vortex to avoid clumping, and cells were kept in ethanol at 4°C for 15 min and
centrifuged at 1600 rpm for 5 min. After washing with PBS/FCS, the cells
were suspended in a propidium iodide solution (10 μg/ml propidium iodide
in 38 mM sodium citrate, pH 7.4, 250 μg/ml RNase A in PBS/1% FCS) and
incubated at 37°C for 30 min. The cells were stored in the fridge and protected
from light until analysis with a FACSCalibur flow cytometry apparatus, using
CellQuest software for the data acquisition and Modfit for the data analysis
(BD Biosciences, San Jose, CA).

Determination of Cell Polarity

The evaluation of polarity was performed as described previously (Zegers
et al., 1997; van IJzendoorn et al., 2000). Briefly, cells were plated onto coverslips,
and after 72 h they were fixed with absolute ethanol (–20°C) for 10 s, washed
with PBS, and subsequently incubated with a mixture of tetrathymohdham-
ine isothiocyanate (TRITC)-labeled phalloidin (100 ng/ml) and Hoechst-33328
(5 ng/ml) at room temperature (RT) for 30 min. The coverslips were then
washed with PBS and mounted. The level of polarity was determined by
counting of the number of TRITC–phalloidin-positive bile canaliculi (BC) per
100 cells, and level is expressed in percentage. At least 10 fields each contain-
ing >300 cells were counted using an epifluorescence microscope (Provis
AX70; Olympus, New Hyde Park, NY).

Immunofluorescence Labeling of Cells

For centrosomal staining, cells were treated with cold Hanks’ balanced salt
solution (HBSS) containing Triton X-100 (1%, vol/vol) for 2 min at 4°C and
immediately fixed with –20°C absolute methanol for 10 min at –20°C. Cells were
then washed with PBS/0.1% BSA (1%, wt/vol) in HBSS for 1 h at RT. Cells were
incubated with mouse monoclonal anti-PKA-RIIα (BD Biosciences Transduction Laboratories, Lex-
ington, KY), rabbit polyclonal anti-γ-tubulin (Sigma-Aldrich, St. Louis, MO),
and/or rabbit anti-pericentrin (Covance, Princeton, NJ) primary antibodies
for 2 h at RT or alternatively overnight at 4°C. For staining of microtubules and
apical recycling endosomes (AREs), cells were fixed with paraformalde-
hyde (4%, vol/vol) and permeabilized with Triton X-100 (0.1%, vol/vol) and
subsequently incubated with mouse anti-β-tubulin (Sigma-Aldrich) or rabbit
anti-rab11a (Zymed Laboratories, South San Francisco, CA) antibodies, re-
spectively. The cells were then washed and incubated with the corresponding
secondary antibodies labeled with either Alexa Fluor-488 or -594 (Invitrogen)
for 1 h at RT and 5 ng/ml Hoechst to stain the nuclei or TRITC-phallolin
(Sigma-Aldrich) to stain apical actin cytoskeleton to visualize BCs. The
coverslips were mounted and analyzed by epifluorescence microscopy (Provis
AX70; Olympus).

Quantification of PKA-RIIα-positive Centrosomes

The percentage of PKA-RIIα-positive centrosomes was determined by count-
ing the number of γ-tubulin–stained centrosomes that were positive or neg-
ative for PKA-RIIα. The number of PKA-RIIα–positive centrosomes was
expressed as the percentage of total number of centrosomes. Several fields
of several coverslips were analyzed.

Cell Lysis, Protein Determination, and Trichloroacetic Acid (TCA) Precipitation

Cells were scraped in ice-cold NP-40 lysis buffer, pH 7.4, supplemented with
a cocktail of protease inhibitors. An homogenous lysate was obtained by
resuspending the cells through the 24-gauge needle. Ten microliters of lysate
was processed for protein determination using bicinchoninic acid and CuSO4
method. Equal amounts of proteins were precipitated by TCA. Briefly, sam-
plings containing equal amount of proteins were complemented until a total
volume of 1 ml with fractionation buffer (supplemented with a cocktail of
protease inhibitors) was reached. Afterward, 5 µl of 25 mg/ml deoxycholic
acid was added to each sample and incubated on ice for 5 min. Proteins were
then precipitated by adding 60 µl of 100% TCA followed by 15-min incuba-
tion on ice. Protein pellets were pelleted at 10,000 × rpm at 4°C for 20 min, af-
after which the pellet was dried under vacuum, resuspended in sample buffer
containing SDS (2%, wt/vol), 1% β-mercaptoethanol, 10% glycerol, 50 mM
Tris, pH 6.8, and 0.02% bromphenol blue (BBF), and boiled for 4 min.

SDS-Polyacrylamide Gel Electrophoresis (PAGE) and Western Blotting

Protein samples were separated with SDS-PAGE 10% acrylamide and subse-
quently transferred to polyvinylidene difluoride (PVDF) or nitrocellulose
membranes. Membranes were blocked with 5% nonfat dry milk in PBS-Tween
20 (0.3%, vol/vol) and incubated with monoclonal anti-PKA RII (BD Bio-
sciences Transduction Laboratories), monoclonal mouse anti β-actin (Sigma-
Aldrich), or goat polyclonal anti-PKA-RII (Upstate Biotechnology, Lake
Placid, NY) antibodies at room temperature for 2 h. For total expression of
PKA-RIIα and AKAP350, membranes were incubated with mouse monoclo-
al antibodies against PKA-RII antibody (BD Biosciences Transduction Labo-
atories) or mouse anti-AKAP350 antibody (gift from Dr. Goldenring, Vanderbilt
University, School of Medicine, Nashville, TN 37232) for 2 h at RT in PBS contain-
ing 0.1% Tween. For phosphorylation of extracellular signal-regulated kinase
(ERK)1/2, cells were lysed as described above, and 30 0.1% Tween. For phosphorylation of extracellular signal-regulated kinase
(ERK)1/2, cells were lysed as described above, and 30 µg of total protein
was suspended in sample buffer containing 2% SDS, 1% β-mercaptoethanol,
10% glycerol, 50 mM Tris, pH 6.8, and 0.02% BBO, boiled for 4 min, and pro-
cessed for SDS-PAGE and transferred onto nitrocellulose or PVDF membranes. After
transfer, membranes were blocked with 5% nonfat dry milk in Tris-buffered
saline (TBS) (1 + vol/vol Tween) and incubated overnight at 4°C with rabbit
anti-p44/p42 MAP kinase or mouse anti-phospho-p44/p42 MAP ki-
nase antibodies (Cell Signaling Technology, Danvers, MA), or mouse anti-
p27Kip1 (BD Biosciences, Transduction Laboratories) antibodies in TBS con-
taining 5% (wt/vol) BSA. Membranes were then washed three times for 5 min
with PBS-Tween 20 (0.3%, vol/vol) and incubated with corresponding sec-
ondary horseradish peroxidase-conjugated antibodies (GE Healthcare, Little
Chalfont, Buckinghamshire, United Kingdom) at room temperature for 1 h
and processed for enhanced chemiluminescence detection (GE Healthcare).
Bands were quantified using free Scion Imaging software (Scion, Frederick,
MD; www.scioncorp.com).

Quantification of Expression of Pericentrin

HepG2 cells were plated onto glass coverslips, and after 72 h, they were
subjected to treatment with 10 ng/ml OSM or 1 mM dibutyryl (db)-cAMP for
4 h. Cells were then fixed with cold methanol at −20°C for 10 min. After
blocking with 1% of BSA in PBS for 1 h at RT, coverslips were incubated with
primary anti-pericentrin antibody (Convance) overnight at 4°C. After
washing three times with PBS, coverslips were probed with corresponding
anti-rabbit Alexa-594 (Invitrogen) at RT for 1 h. Coverslips were mounted
and processed for fluorescence microscopy (Provis AX70; Olympus) by using 60×
objective. Several images were taken from different fields of each coverslip
using analysSIS (Soft Imaging Systems, Münster, Germany) at 1× exposure
time, and all other used software settings were standardized for accurate
comparison between images. The intensity of fluorescence was measured by
free Scion Imaging software.

Synthesis of C6-Nitro-benzoa-diazole (C6-NBD)-Sphingomyelin

C6-NBD-sphingomyelin (SM) was synthesized from C6-NBD and sphingo-
sylphosphorylcholine as described previously (van der Wouden et al., 2002).
The C6-NBD-SM was stored at −20°C and routinely checked for purity.

Transcytosis of Sphingolipids

HepG2 cells expressing the AKAP-IS peptide or not were washed three times
in HBBS and preincubated for 30 min at 37°C in HBBS supplemented or not
with 10 ng/ml OSM. After the preincubation, the cells were cooled to 4°C by
washing with ice-cold HBBS. Subsequently, the basolateral plasma membrane
(PM) was labeled with 4 µM C6-NBD-SM for 30 min in HBBS supple-
mented or not with OSM, which allows incorporation of the lipid probe in the
exoplasmic leaflet of the basolateral plasma membrane while preventing its
internalization (van IJzendoorn et al., 1997). When cells had been pretreated
with OSM, the cytokine was included in all further incubations. After incor-
poration of the lipid probe in the basolateral plasma membrane, cells were
washed, and transcytosis was allowed to occur at 37°C for different time periods.
To terminate transport, the cells were cooled by washing three times with
ice-cold HBBS, and lipid remaining in the outer leaflet of the basolateral mem-
brane was removed by a back-exchange procedure. To this end, the cells were
incubated for 30 min at 4°C with 5% BSA in HBBS, followed by washing with
ice-cold HBBS. This procedure was repeated once (van IJzendoorn et al., 1997).

Labeling of the CE/SAC with Fluorescent Lipid Analogues

The CE/SAC was labeled with the lipid analogue exactly as described in detail
previously (van IJzendoorn and Hoekstra, 1998, 1999). In brief, cells were
drawn with 4 µM C6-NBD-SM at 37°C to allow internalization from the
basolateral surface and subsequent transcytosis to the apical, BC PM domain.
After 30 min of incubation, lipid analogue still residing at the basolateral
membrane was depleted by a back-exchange procedure at 4°C (2 × 30-min
incubation in HBBS + 5%, wt/vol BSA; compared with van IJzendoorn et al.,
1997), and BC-associated lipid analogue was chased into the SAC at 18°C for
1 h in back-exchange medium. Then, the NBD fluorescence at the exoplasmic
leaflet of the bile canaliculi plasma membrane was destroyed using sodium
dithionite at 4°C, leaving the majority of the lipid probe-derived fluorescence in
the SAC (van IJzendoorn and Hoekstra, 1998, 2000).

RESULTS

OSM but Not Dibutyryl-cAMP Stimulates the Association of PKA-RIIα with Centrosomes

In a previous study, we observed that OSM-stimulated and
PKA-dependent apical lumen development in HepG2 cells
coincided with an increased localization of PKA-RIIα at the
centrosomal region (van der Wouden et al., 2002). To inves-
tigate this in more detail, cells were treated with 10 ng/ml
human recombinant OSM or buffer (control) in the extracel-
ular medium at 37°C for 4 h, and immunolabeled with mouse monoclonal antibodies against PKA-RIIα and
rabbit polyclonal antibodies against the centrosomal protein
γ-tubulin. In untreated HepG2 cells in interphase, typically
one γ-tubulin–positive centrosome consisting of two centri-
oles was observed per cell (Figure 1A). In polarized cells, on
average 2.3 ± 0.2 centrosomes, identified by γ-tubulin stain-
ing, were counted within a 2-µm distance from each apical
surface (BC; Figure 2A), consistent with the participation of
typically two to three cells per apical lumen (cf. Herrema
et al., 2006). Most centrosomes are therefore subapically posi-
tioned in polarized cells (Figure 1, A–C, merged image in D).
There were no differences in γ-tubulin staining between
nontreated and OSM-treated cells (cf. Figure 1, A–D), and
identical results were obtained with antibodies against pericen-
trin (data not shown).

Immunofluorescence microscopy revealed the presence of
PKA-RIIα in the cytosol, in the nucleus, and at the centrosome
(Figure 1, A’ and B’). Centrosomal PKA-RIIα seemed to local-
ize at the pericentriolar material surrounding and partially
overlapping with the individual pericentrin-positive centrioles
(Figure 1, E–G), which is in accordance with the localization of
PKA anchoring proteins such as AKAP350 and pericentrin at
the pericentriolar material (Keryer et al., 1993; Doxsey et
al., 1994). The percentage of PKA-RIIα–containing centrosomes
was determined by counting centrosomes, identified by γ-tu-
bulin staining, that were positive for PKA-RIIα. In untreated
cells, PKA-RIIα was detected at ~48% of the (γ-tubulin–posi-
tive) centrosomes (Figure 2B). The majority of the centrosomes
that seemed devoid of PKA-RIIα was found in interphase cells

Vol. 18, July 2007
2747
OSM-elicited signaling cascades involve, among others, the p42 MAP kinase/ERK2, which becomes phosphorylated upon treatment of the cells with OSM (Figure 2D), in agreement with previous reports (Klausen et al., 2000). Treatment of the cells with PD98059, a compound that binds to the ERK-specific MAP kinase kinase (MEK) and in this way prevents phosphorylation of ERK by MEK, prevented the OSM-stimulated phosphorylation of ERK2 (Figure 2D) and inhibited the OSM-stimulated association of PKA-RIIα with centrosomes (Figure 2B). This suggests that the enhanced association of PKA-RIIα with centrosomes in response to OSM requires the OSM-mediated activation of ERK2 via MEK.

In contrast to OSM, treatment of HepG2 cells with the membrane-permeable and stable cAMP analogue db-cAMP at 1 mM, which effectively stimulates PKA activity in HepG2 (van der Wouden et al., 2002) and other cells, did not stimulate the association of PKA-RIIα with centrosomes (Figure 2B). Note that the cellular expression level of PKA-RIIα and two known centrosomal AKAPs, pericentrin and AKAP350 (a.k.a. AKAP450 or CG-NAP), did not change upon treatment of the cells with OSM or db-cAMP, as evidenced by Western blot (RIIα and AKAP350; Figure 2E) or quantitative immunofluorescence (pericentrin, Figure 2F), suggesting that the OSM-enhanced association of PKA-RIIα with centrosomes reflected a redistribution of the protein rather than an increase in expression.

To determine whether the catalytic activity of PKA was required for the OSM-stimulated association of PKA-RIIα with centrosomes, cells were treated with OSM in combination with the ATP-site PKA inhibitors H89 or KT5720. These structurally different inhibitors were shown in our laboratory to effectively inhibit cAMP-stimulated development of apical lumens in HepG2 cells (Zegers and Hoekstra, 1997; van IJzendoorn and Hoekstra, 1999, 2000; Supplemental Figure S2). As shown in Figure 2B, H89 and KT5720 did not interfere with the OSM-stimulated association of PKA-RIIα with centrosomes, suggesting that catalytic activity of PKA is not required.

Together, the data show that in HepG2 cells, robust PKA-RIIα staining is detected at 48% of γ-tubulin-positive centrosomes and that treatment of the cells with OSM, but not db-cAMP, causes a significant MEK–ERK2-dependent increase in the association of PKA-RIIα at centrosomes.

Inhibition of PKA-RIIα Anchoring at Centrosomes Interferes with the Subcellular Positioning of the Centrosome and Common Endosome

To confirm that the OSM-stimulated association of PKA-RIIα with centrosomes occurs via an AKAP, and to investigate whether the OSM-stimulated association of PKA-RIIα with centrosomes plays a role in OSM-stimulated bile canalicular lumen development (van der Wouden et al., 2002; van IJzendoorn et al., 2004a), HepG2 cells were stably transfected with epitope-tagged AKAP-I5, a peptide that specifically binds to PKA-RII with high affinity and displaces it from its natural anchoring sites, or, as a control, stably transfected with an epitope-tagged nonfunctional scrambled peptide (details with regard to these peptides are described

Figure 1. Localization of centrosomes in polarized HepG2 cells. Seventy-two hours after plating, HepG2 cells were stained with anti-γ-tubulin antibody to visualize centrosomes (A) and TRITC-phalloidin to stain apical surfaces (B). In polarized cells, most centrosomes (arrows) localize at the apical surface (D), some of which are positive for PKA-RIIα as shown in the bottom panel (A’, B’, and D’). Nuclei were stained with Hoechst (C and C’). (E–G) A close-up shows that PKA-RIIα (F) is localized at the pericentriolar mesh, surrounding and partially overlapping with the pericentrin-positive centrioles (E). Merged image in G. Bars, 20 μm (A–D’) and 0.5 μm (E–G).
in Alto et al., 2003). Stable transfectants were selected, and they were shown to express AKAP-IS or the scrambled peptide and displace PKA-RIIα from natural anchoring sites or not, respectively (cf. Wojtal et al., 2006). In cells stably expressing the AKAP-IS peptide, but not the scrambled peptide, the percentage of PKA-Rlα-positive centrosomes (identified by γ-tubulin) was significantly reduced (Figure 3A). The expression level of PKA-Rlα in cells expressing the peptide was not changed compared with parental HepG2 cells (cf. Wojtal et al., 2006). Importantly, in contrast to parental HepG2 cells or HepG2 cells expressing the scrambled peptide, treatment of cells expressing the AKAP-IS peptide with OSM at 37°C for 4 h did not result in an increase in the percentage of centrosomes that contained PKA-Rlα (Figure 3A), confirming that OSM stimulated the association of PKA-Rlα with centrosomes in parental HepG2 cells by promoting its AKAP-mediated anchoring. Expression of the AKAP-IS peptide did not prevent the OSM-stimulated phosphorylation of ERK2 (Figure 3B). Together, the data suggest that expression of the AKAP-IS peptide reduces the anchoring of PKA-Rlα to centrosomes, and, importantly, that it effectively prevents the OSM-stimulated association of PKA-Rlα with centrosomes.

Interestingly, we noticed that many centrosomes were no longer positioned near the apical surface in cells expressing the AKAP-IS peptide (Figure 3C, 2–4, compare with 1–3; cf. Figure 1, A–D). Indeed, on average no more than 0.5 PKA-Rlα-positive and 1.2 γ-tubulin positive centrosomes per apical lumen were counted, which is in striking contrast to the typically 1.0 PKA-Rlα-positive and 2.3 γ-tubulin–positive centrosomes per apical lumen in parental HepG2 cells or HepG2 cells expressing the scrambled peptide (Figure 3D and E). The number of cells participating in an apical lumen did not change (data not shown). PKA-Rlα- and γ-tubulin–positive centrosomes were localized in proximity to the nucleus (Figure 3C, 2–4). Inhibition of catalytic PKA activity with KT5720 or H89 for 4 h did not result in a relocation of subapical centrosomes in parental HepG2 cells (Figure 2B), suggesting that the observed loss of subapical positioning in cells expressing the AKAP-IS peptide occurred independently of altered PKA activity. The perinuclear position of the centrosome in AKAP-IS–expressing cells altered the overall organization of the microtubule network, as many microtubules were concentrated in the perinuclear region away from the apical surface (Figure 3C, 4). Microtubules that seemed to be directed toward the apical domain were also observed (Figure 3C, 5). These data suggest that expression of the AKAP-IS peptide and concomitant reduction of centrosome–associated PKA-Rlα interferes with the subapical positioning of the centrosome and the orientation of a major part of the microtubule net-
work in a manner that seems unrelated to the enzymatic activity of PKA.

Several endosomal compartments such as the CE/SAC and the rab11a-positive ARE are typically concentrated around the centrosome in epithelial cells (Casanova et al., 1999; Leung et al., 2000; Hobdy-Henderson et al., 2003), and they mediate the transcellular flow of membranes (for review, see Hoekstra et al., 2004), a process that has been shown to be stimulated by OSM (van der Wouden et al., 2002). Therefore, we next examined the subcellular position of the CE/SAC and ARE in control HepG2 cells and HepG2 cells expressing the AKAP-IS peptide. The CE/SAC was visualized by the temperature-dependent accumulation of a fluorescent lipid probe, as described previously (van IJzendoorn and Hoekstra, 1998). In brief, cells were labeled with NBD-sphingomyelin at 37°C for 30 min, washed, and incubated at 18°C for another 90 min in buffer containing 5% (wt/vol) albumin. Cells were then treated with dithionite at 4°C for 10 min, washed once with buffer, and examined with epifluorescence microscopy. As shown in Figure 4, A and B, CE/SAC (open arrows) were oriented toward the apical surfaces (closed arrow) in HepG2 cells, consistent with previous results (van IJzendoorn and Hoekstra, 1998, 1999, 2000; van IJzendoorn et al., 2004a,b). In contrast, in HepG2 cells expressing the AKAP-IS peptide, many CE/SAC (open arrows) were no longer oriented toward the apical surface (closed arrow), and they displayed a perinuclear localization (Figure 4, C and D), in accordance with the position of the centrosome in these cells (cf. Figure 3C, 2–5).

The ARE was visualized using an antibody raised against rab11a, a well-established ARE-associated small GTPase (Casanova et al., 1999; Brown et al., 2000; Leung et al., 2000; Prekeris et al., 2000). In parental HepG2 cells, rab11a labeling was exclusively subapical, as expected (Figure 4, F and G). In HepG2 cells expressing the AKAP-IS peptide, the subapical rab11a labeling was preserved. In addition to the subapical labeling, however, in these cells rab11a labeling could also be observed at the perinuclear centrosomes (Figure 4, J and K, closed arrows). Together, these data show that the displacement of PKA-RII from centrosomes and the concomitant positioning of centrosomes away from the apical surface spatially separates the CE/SAC from rab11a-positive centrosomes, and they suggest that rab11a localizes to a separable subapical and centrosomal pool.

Because (loss of) PKA-RII association with centrosomes has been correlated to cell cycle progression, we examined the cell proliferation rate, mitotic index, and cell cycle dis-
distribution of parental and AKAP-IS–expressing cells. The proliferation rates, the mitotic index (i.e., percentage of cells showing typical mitotic DNA figures), and the cell cycle distribution (measured by fluorescence-activated cell sorting [FACS]) of parental and AKAP-IS–expressing cells were comparable (Supplemental Figure S1, B–D), suggesting that the effects of AKAP-IS expression on centrosome and CE/SAC positioning are not likely due to changes in cell cycle.

Expression of the PKA-displacing AKAP-IS Peptide Inhibits OSM- but Not db-cAMP-stimulated Bile Canaliculuar Lumen Development

Because the expression of the AKAP-IS peptide prevented the OSM-stimulated association of PKA-RII with centrosomes (Figure 3A), we next examined whether expression of the AKAP-IS peptide also prevented the previously reported (van der Wouden et al., 2002; van IJzendoorn et al., 2004a) stimulation of apical bile canalicular lumen development, i.e., cell polarity, by OSM. For this, AKAP-IS–expressing and control HepG2 cells (i.e., parental cells or HepG2 cells expressing the scrambled peptide) were treated with OSM or buffer (control) at 37°C for 4 h, fixed, and labeled with TRITC-conjugated phalloidin to identify BC and the nuclear stain Hoechst. Cells were then examined with epifluorescence microscopy, and the ratio bile canalicular lumens (BC)/100 cells, as a measure for cell polarity (see Materials and Methods; cf. Zegers and Hoekstra, 1997; van IJzendoorn and Hoekstra, 2000), was determined. In both AKAP-IS–expressing and control HepG2 cells the ratio BC/100 cells was $\frac{1}{11}0.11$ (Figure 5), which, when taken into account that at least two cells participate in a single BC, means that at least 30% of the cells in the culture were polarized. Treatment of parental HepG2 cells or HepG2 cells expressing the scrambled peptide with OSM or buffer (control) at 37°C for 4 h, fixed, and labeled with TRITC-conjugated phalloidin to identify BC and the nuclear stain Hoechst. Cells were then examined with epifluorescence microscopy, and the ratio bile canalicular lumens (BC)/100 cells, as a measure for cell polarity (see Materials and Methods; cf. Zegers and Hoekstra, 1997; van IJzendoorn and Hoekstra, 2000), was determined. In both AKAP-IS–expressing and control HepG2 cells the ratio BC/100 cells was $\frac{1}{11}0.11$ (Figure 5), which, when taken into account that at least two cells participate in a single BC, means that at least 30% of the cells in the culture were polarized. Treatment of parental HepG2 cells or HepG2 cells expressing the scrambled peptide with OSM resulted in a significant increase in BC numbers but to a lesser extent in comparison with treatment with db-cAMP alone (Figure 5). These data indicate that OSM (but not db-cAMP) is unable to stimulate apical lumen development in AKAP-IS–expressing cells, and, moreover, causes a loss of preexisting apical surface domains. Hence, the capacity of OSM to stimulate the anchoring of PKA-RII to centrosomes is functionally correlated to its control over apical lumen development.

Expression of the PKA-displacing AKAP-IS Peptide Does Not Inhibit OSM-stimulated Basolateral to Apical Transcytosis

The stimulatory effect of OSM on apical lumen development in HepG2 cells was previously shown to correlate with a...
stimulatory effect of the cytokine on basolateral-to-apical membrane trafficking, evidenced by an increased transcytosis of the fluorescent lipid analogue NBD-sphingomyelin (van der Wouden et al., 2002). Therefore, we next examined whether OSM could stimulate basolateral-to-apical membrane trafficking in cells expressing the AKAP-IS peptide. For this, cells cultured on glass coverslips were labeled with NBD-sphingomyelin as described previously (van der Wouden et al., 2002). In brief, control cells or cells expressing the AKAP-IS peptide were preincubated with OSM for 30 min and then the basolateral surface was incubated with NBD-sphingomyelin for 30 min at 4°C in the presence or absence of OSM. Cells were then washed and the fluorescent lipid analogue was chased at 37°C for 15 or 30 min in buffer in the presence or absence of OSM. Finally, cells were washed with ice-cold HBSS to stop membrane flow and the coverslips were mounted for immediate microscopy. Figure 6, A–D, shows that the lipid analogue readily reaches the apical surface of OSM-treated cells expressing the AKAP-IS peptide, very similar to control HepG2 cells (cf. van der Wouden et al., 2002). After different time intervals, cells were cooled to block transport, and the number of NBD-positive BCs was determined (E). Data are expressed as mean ± SD from three independent experiments. Statistical significance was determined using a Student’s t test.

DISCUSSION

The present study demonstrates that PKA-RIIα anchoring at the centrosome and the coinciding subapical positioning of the centrosome plays a crucial role in OSM-, but not cAMP-mediated stimulation of apical bile canalicular lumen development in hepatic HepG2 cells.

Immunofluorescence microscopic analysis reveals that ~48% of the centrosomes in a typical HepG2 cell population contain detectable amounts of PKA-RIIα. This increases to ~65% ($p < 0.01$) in oncostatin M-treated cells, but not in db-cAMP-treated cells. The enhanced association of PKA-RIIα with centrosomes is a result of anchoring via AKAPs as expression of the PKA-RII-displacing peptide AKAP-IS (Alto et al., 2003), which reduced the anchoring of PKA-RIIα to centrosomes, prevents the stimulatory effect of OSM. A scrambled version of the peptide was without effect. The association and dissociation of PKA-RIIα from centrosomal AKAPs has been shown to be regulated by phosphorylation of PKA-RIIα in mitotic cells (Carlson et al., 2001). In our studies, however, changes in the expression level of the cyclin-dependent kinase inhibitor p27Kip1 (indicative for altered cell cycle progression) or electrophoretic mobility shifts (indicative for changes in PKA-RIIα phosphorylation status) were not observed in response to OSM. Furthermore, expression of the AKAP-IS peptide did not significantly alter the proliferation rate, mitotic index, or cell cycle phase distribution pattern of the cell culture. As a part of the underlying molecular mechanism, our data suggest that signaling through MEK and ERK2 downstream of OSM stimulation is involved in stimulating centrosomal anchoring of PKA-RIIα. Fluorescence microscopic examination of cells treated with OSM for 30 min or 4 h and subsequently processed for phospho-ERK1/2 immunolabeling did not reveal a clear association of ERK1/2 with centrosomes (our unpublished data), suggesting that ERK2 does not or only transiently acts at the centrosome. How MEK–ERK2-dependent anchoring of PKA-RIIα to centrosomal AKAPs is regulated at the molecular level thus requires further studies.

Most PKA-RIIα–recruiting centrosomes displayed a subapical position. The tethering of PKA-RIIα to centrosomes may serve to reinforce the subapical position of these centrosomes. Indeed, the stable expression of the AKAP-IS peptide results in a perinuclear position of most centrosomes. A scrambled version of the peptide was without effect. Whereas reduced centrosomal PKA-RIIα anchoring clearly affects the subapical position of the centrosome, our data show that subapical centrosome positioning is unaffected by two structurally distinct PKA inhibitors (H89 and KT5720), and, therefore, is likely to be unrelated to enzymatic PKA activity. Intriguingly, even though the displacement of PKA-RIIα from centrosomes is incomplete, the resulting effect on centrosome position is prominent, which may suggest that the quantity of anchored PKA-RIIα, possibly proportionate to other centrosome-anchored (regulatory) molecules, rather than the anchoring of PKA-RIIα as such, controls subapical centrosome positioning. The molecular mechanisms underlying the subapical positioning of (PKA-RIIα–positive) centrosomes in hepatocytes requires further studies. Cytoskeletal elements are likely to be involved in this, possibly involving intermediate (cytokeratin) filaments that have been reported to anchor centrosomes to the apical surface of intestinal epithelial Caco-2 cells (Salas, 1999).

Concomitant with the perinuclear positioning of the centrosome in cells expressing the PKA-displacing peptide, also the subcellular distribution of the CE/SAC shifted from the subapical to the perinuclear region. Interestingly, the sub-
apical localization of rab11a-positive ARE is preserved in cells expressing the AKAP-IS peptide, although an additional pool of rab11a was associated with the perinuclear centrosomes. These data indicate that common endosomes and apical recycling endosomes can be spatially separated, underscoring that these represent distinct entities (Brown et al., 2000; Leung et al., 2000; Wang et al., 2000). Whereas basolateral-to-apical membrane trafficking, i.e., transcytosis, in epithelial cells including hepatocytes involves sequential passage through an early endosome, common endosome, and apical recycling endosome (for review, see Tuma and Hubbard, 2003), the spatial separation of the latter two as observed in cells expressing the AKAP-IS peptide does not seem to impede constitutive or oncostatin M-stimulated transcytosis. Because the stimulatory effect of OSM on apical lumen development has been shown to require apical surface-directed membrane flow from common endosomes (van IJzendoorn et al., 2004), the combined data suggest that apical surface-directed membrane trafficking is necessary but not sufficient for OSM-stimulated apical lumen development.

Importantly, the ERK2-mediated anchoring of PKA-RIIα at the centrosome and the concomitant subapical positioning of PKA-RIIα-positive centrosomes seems essential for OSM to stimulate apical bile canalicularener lumen development, a process that was previously shown to require the enzymatic activity of PKA (van der Wouden et al., 2002). In fact, in AKAP-IS-expressing cells that show reduced centrosomal anchoring of PKA-RIIα and that are inhibited in their capability to position the centrosome subapically, oncostatin M decreases cell polarity, evidenced by a loss of apical lumens. Although the underlying mechanism for the decrease in cell polarity remains unknown, the data suggest that the ability of oncostatin M to stimulate the association of PKA-RIIα with centrosomes and the subcellular positioning of PKA-RIIα-positive centrosomes is vital for the outcome of the oncostatin M-elicited cellular response. We thus propose that OSM-stimulated anchoring of PKA-RIIα to centrosomes may serve to reinforce or stabilize the subapical position of the centrosome and that this is necessary for properly relaying the signals elicited by specific extracellular ligands such as OSM to subapically located effector molecules that participate in the development of bile canalicularener lumens in manner that is uncoupled from lumens-directed trafficking. Strikingly, the inhibition of centrosomal PKA-RIIα anchoring and apical centrosome positioning in cells expressing the AKAP-IS peptide does not affect apical lumen development in unstimulated or in db-cAMP-stimulated cells. This implies that the regulated centrosomal anchoring of PKA-RIIα and subapical centrosome positioning is not essential for apical lumen development per se but rather for apical lumen development in response to specific signaling molecules such as OSM. These data underscore that, in a single hepatic cell line (HepG2), multiple PKA-dependent signaling pathways operate in parallel in the process of polarity development and that centrosome-anchored PKA-RIIα and subapical centrosome positioning are important in some of these pathways.

ACKNOWLEDGMENTS

We thank J. Scott for providing the AKAP-IS and AKAP-scrambled constructs, J. Goldenring for the AKAP580 antibodies, and H. Kampinga (University Medical Center Groningen, Groningen, The Netherlands) for γ-tubulin antibodies. We thank D. Théard for the p27Kip1 expression experiment and valuable discussions. S.C.D.v.J. was supported by the Royal Dutch Academy of Sciences (KNAW).

REFERENCES

K. A. Wojtal et al.

