Multiple 40-kDa Heat-Shock Protein Chaperones Function in Tom70-dependent Mitochondrial Import

Melanie K. Bhangoo, Stefan Tzankov, Anna C.Y. Fan, Kurt Dejgaard, David Y. Thomas, and Jason C. Young

Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada

Submitted January 31, 2007; Accepted June 19, 2007
Monitoring Editor: Jeffrey Brodsky

Mitochondrial preproteins that are imported via the translocase of the mitochondrial outer membrane (Tom70 receptor are complexed with cytosolic chaperones before targeting to the mitochondrial outer membrane. The adenine nucleotide transporter (ANT) follows this pathway, and its purified mature form is identical to the preprotein. Purified ANT was reconstituted with chaperones in reticulocyte lysate, and bound proteins were identified by mass spectrometry. In addition to 70-kDa heat-shock cognate protein (Hsc70) and 90-kDa heat-shock protein (Hsp90), a specific subset of cochaperones were found, but no mitochondria-specific targeting factors were found. Interestingly, three different Hsp40-related J-domain proteins were identified: DJA1, DJA2, and DJA4. The DJAs bound preproteins to different extents through their C-terminal regions. DJA dominant-negative mutants lacking the N-terminal J-domains impaired mitochondrial import. The mutants blocked the binding of Hsc70 to preprotein, but with varying efficiency. The DJAs also showed significant differences in activation of the Hsc70 ATPase and Hsc70-dependent protein refolding. In HeLa cells, the DJAs increased new protein folding and mitochondrial import, although to different extents. No single DJA was superior to the others in all aspects, but each had a profile of partial specialization. The Hsp90 cochaperones p23 and Aha1 also regulated Hsp90–preprotein interactions. We suggest that multiple cochaperones with similar yet partially specialized properties cooperate in optimal chaperone–preprotein complexes.

INTRODUCTION
The majority of mitochondrial proteins are encoded in the nucleus, translated on cytosolic ribosomes, and subsequently imported into mitochondria (Reichert and Neupert, 2004). The translocase of the mitochondrial outer membrane (TOM) is responsible for polypeptide translocation across the outer membrane; and inside the organelle, various mechanisms sort these polypeptides to their appropriate compartment—matrix, inner membrane or intermembrane space. The TOM complex contains integral membrane import receptors, Tom20 and Tom70, which mediate targeting of mitochondrial preproteins, and a general import pore that provides an aqueous channel for translocation. Tom20 is thought to be responsible for the import of preproteins bearing classical matrix-directed N-terminal signal sequences, or leader peptides. Tom70, the alternate receptor, is thought to mediate the import of preproteins that contain targeting information within their mature sequences (Koehler, 2004; Rehling et al., 2004). Although much of our knowledge of import derives from work in Saccharomyces cerevisiae and Neurospora crassa, the biological functions of the human Tom70 and Tom20 receptors seem to be largely conserved (Iwahashi et al., 1997; Schleiff et al., 1997; Yano et al., 1997; Suzuki et al., 2002).

The Tom70 receptor seems to be most critical for the import of particularly hydrophobic preproteins, such as members of the inner membrane metabolite carrier family (Sollner et al., 1990; de Marcos-Lousa et al., 2006). Before import, these preproteins typically depend on cytosolic chaperones to maintain their solubility. The ATP-dependent chaperones 70-kDa heat-shock cognate protein (Hsc70) and 90-kDa heat-shock protein (Hsp90) have key roles in this mechanism (Young et al., 2004). In addition to maintaining the solubility of the bound preprotein, Hsc70 and Hsp90 can both dock onto to a specific binding site in Tom70, an essential first step in preprotein targeting. The chaperone docking site lies in the central region of Tom70 next to the single N-terminal transmembrane domain (Young et al., 2003). At this stage, preprotein is thought to contact Tom70 directly in a C-terminal region separate from the chaperone docking site (Brix et al., 2000; Wu and Sha, 2006). ATP-dependent cycling by Hsp90 and most probably Hsc70 then assists the translocation of preprotein via the outer membrane TOM machinery (Fan et al., 2006).

In their other cellular functions, Hsc70 and Hsp90 interact with a wide range of cochaperone proteins, which connect additional specific chaperoning functions or biochemical activities to chaperone complexes. In some cases, the type of substrate polypeptide bound by a chaperone complex determines which specific cochaperone is recruited to Hsp90. For example, the immunophilin FKBP52 usually associates with, and assists in the maturation of, steroid hormone receptors, whereas Cdc37 has a comparable role for kinases (Pratt and Toft, 2003). Such specificity is not absolute: both Cdc37 and
the immunophilin FKBP8 have been found in chaperone complexes with a folding-deficient mutant of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel (Wang et al., 2006). Many cochaperones contain functionally conserved chaperone–interaction domains. Some interactions with Hsp90 and Hsc70 are mediated by structurally conserved tetratricopeptide repeat (TPR) clamp domains that recognize the C-terminal motifs of the chaperones. The TPR-domains in FKBPS2 and the related cyclolin Cyp40 connect to Hsp90. Those in the cochaperone Hop recognize Hsc70 and Hsp90 separately, allowing Hsc70–substrate complexes to recruit Hsp90 (Pratt and Toft, 2003). Also, a conserved TPR clamp domain in Tom70 forms its chaperone docking site (Young et al., 2003). J-domains, found in various cochaperones including the Hsp40-related proteins, stimulate ATP hydrolysis and substrate binding by Hsc70. J-domains do not form stable contacts with Hsc70, but they are essential for all known functions of Hsc70 (Walsh et al., 2004; Qiu et al., 2006). Several nucleotide exchange factors including Bag-1 transiently promote ATP re-binding and Hsc70 dissociation from substrate (Mayer and Bukau, 2005). Cochaperones that do not belong to these structural families include Cdc37, p23, and Aha1. p23 stabilizes the ATP- and substrate-binding state of Hsp90, whereas the recently discovered Aha1 stimulates the Hsp90 ATPase (Panaretou et al., 2002; Sullivan et al., 2002; Lotz et al., 2003; Morishima et al., 2003; Pearl and Prodromou, 2006). It is not known what proteins in addition to Hsc70 and Hsp90 are complexed with Tom70-dependent preproteins before import, or what proteins are involved in complex formation. It seems certain that cochaperone proteins participate in these complexes. The preproteins are not related to structural families of proteins known to prefer specific cochaperones, and the involvement of many cochaperones cannot be predicted. The preproteins seem to be in high-molecular-weight complexes of ~600 kDa, similar to other Hsp90-bound complexes, but with some heterogeneity (Young et al., 2003; Fan et al., 2006). The identity and function of bound cochaperones would be of great significance. First, are the cochaperones present specifically bound? Second, are the components unique to the cochaperone–preprotein complexes, and what role might they have? Third, do the cochaperones have binding properties for the function of Hsc70 and Hsp90?

To address these questions, we reconstituted chaperone complexes in reticulocyte lysate (RL) as a model cytosol. This method was used to originally identify most of the cochaperones involved in steroid receptor and kinase maturation (Pratt and Toft, 2003). RL is uniquely suited for such experiments. Although it contains essentially no organellar contamination, it is the basis for all experiments reconstituting cell-free mitochondrial import; therefore, it contains all necessary factors. A mitochondrial preprotein, the adenine nucleotide transporter (ANT) is uniquely purifiable in biochemical amounts (Pebay-Peyroula et al., 2003), and it was used as the starting point for the reconstitution of complexes.

MATERIALS AND METHODS

Chemicals and Reagents

Unless stated otherwise, all chemical reagents were from Sigma Diagnostics Canada or BioShop Canada (Mississauga, ON, Canada). Restriction enzymes and other recombinant DNA reagents were from New England Biolabs (Ipswich, MA). Invitrogen (Carlsbad, CA), Invitrogen (San Diego, CA) and Gliandamycin (GA) was from LC Laboratories (Boston, MA). Untreated rabbit RL was from Green Hectores (Oregon, WI). Antibodies against Hsp90, Hsc70, Hop, FKBPS2, and Hsp40 were from Assay Designs (Ann Arbor, MI); those against Cdc37, Cyp40, and p23 were from Affinity BioReagents (Golden, CO); that against DJA1 was from Labvision/NeoMarkers (Fremont, CA); and that against luciferase was from Sigma Diagnostics Canada. The antibody against DJA1 was from Transduction Laboratories (MV, Obermumperg). Those against DJA2 and DJA4 were gifts from Dr. M. Mori (Kumamoto, Japan), and that against Hsp60 was a gift from Dr. F. U. Hartl (Martinsried, Germany). Additional antibodies specific for DJA1, DJA2, and DJA4 were raised in rabbits against the synthetic peptides LLVDD/PSQER, FVTI/NGET, and NF/NQGF, respectively, and they were confirmed with immuno-blotts against the purified DJA proteins, and HeLa cells were transfected with each antibody. Antibodies against the myc (9E10) and hemagglutinin (HA.11) epitope tags were from Covance/BAbCO (Richmond, CA).

Plasmds

The sequences encoding bovine phosphatase carrier (PIC) and N. crassa Rieske iron-sulfur protein (ISP) were in pEGM3 (Promega, Madison, WI) (Sollner et al., 1989; Zara et al., 1992). The sequence encoding murine ANT2 (NM_007451) was amplified by polymerase chain reaction (PCR) from a cDNA library and inserted into pGEM-11Z (Promega) (Fan et al., 2006). The sequences encoding nontagged human Hsp90α and rat Hsc70 were in pET15b and pET11a (Novagen, San Diego, CA), respectively, and the sequences encoding residues 566-753 of human Hsp90 (C-90) and residues 151-263 of human Bag-1 (C-Bag) were in pProExH1a (Clontech, Mountain View, CA) (Young and Hartl, 2000; Sondermann et al., 2001; Young et al., 2003). Recombinant nontagged human p23 was in pET28 (Young and Hartl, 2000), and the sequence encoding the human DJA1 (NM_01539) also in pET28a was a gift from a CIBN (Laboratório Nacional de Luz Síncrona, Campinas SP, Brazil) (Borges et al., 2005). The sequences encoding human Hsc70 (NM.006597), DJA2 (NM.005880), and DJA4 (NM.016602) as well as the sequences encoding amino acids 98-397 of human DJA1 (C-A1), amino acids 106-412 of human DJA3, and amino acids 99-397 of human DJA4 (C-A4) were amplified from a cDNA library and inserted into pProExH1a (Clontech). Sequences of DJA1, DJA2, and DJA4 were inserted into pGEM-11Z (Promega) without tags, and into pcDNA3.1 myc-His C (Invitrogen). Human Aha1 in pProExH1a was a gift from Dr. M. Obermumperg (Houston, TX) (Lotz et al., 2003). The sequence encoding firefly luciferase was amplified by PCR from pGL3 (Promega) and inserted into pcDNA3.1 (Invitrogen) without a tag; the pSV40-β-galactosidase vector was from Promega. The vectors pCAGGS-3xHA, pGSR-ΔBD, and pMTV-luciferase (glucocorticoid responsive element [GRE]-luciferase) were as reported previously (Hollenberg et al., 1987; Hollenberg and Evans, 1988; Breychzy et al., 2003; Young et al., 2003).

Protein Purification

The expression vectors for full-length His-tagged DJA1, DJA2, and DJA4 were grown in Rosetta 2 E.cherisica coli cells (Novagen), and protein expression was grown with 1 mM isopropyl-β-D-thiogalactopyranoside at 30°C for 1 h, at 37°C for 30 min, and at 30°C for 3 h, respectively. The cells were harvested or resuspended in buffer containing 750 mM NaCl, 60 mM imidazole and 20 mM β-mercaptoethanol at pH 7.5, with β-mercaptoethanol and protease inhibitors (Roche, Indianapolis, IN). Cells were lysed by cavitation in a French press, and the cell debris was removed by centrifugation. The supernatant was loaded onto a 5-mL nickel-Sepharose high-performance column (GE Healthcare, Little Chalfont, Buckinghamshire, United Kingdom), and proteins were eluted with buffer containing 1 mM imidazole, 500 mM NaCl and 20 mM KH2PO4, pH 7.5. Peak fractions were loaded on a Superdex 200 Hi-Load 16/60 column (GE Healthcare) and eluted with buffer H5 (500 mM NaCl, 20 mM HEPES-KOH, pH 7.5, and 5 mM MgOAc), and aggregated proteins were rejected, and the yield was determined by absorbance at 280 nm. The DJA proteins lacking the N-terminal J-domain, C-A1, C-A2, and C-A4, were purified identically to the full-length proteins. Hsc70 was expressed for 4 h at 30°C and purified on nickel-Sepharose high-performance equilibrated in buffer containing 500 mM NaCl, 20 mM imidazole, and 20 mM KH2PO4, pH 7.5, and eluted in buffer containing 300 mM imidazole and 20 mM KH2PO4, pH 7.5. Hsc70 was further purified by ion exchange on a Mono Q 5/50 GL column and gel filtration on a Superdex 26/100 Hi-Load 16/60 column (GE Healthcare) equilibrated in buffer C (100 mM KOAc, 20 mM HEPES-KOH, pH 7.5, and 5 mM MgOAc). Bovine ANT was purified as described previously (Klingenberg et al., 1979; Pebay-Peyroula et al., 2003), with the following modifications. Micrthochondria were prepared from bovine heart and treated with trypsin outside, and then they were solubilized in buffer AB (500 mM NaCl, 10 mM HEPES-KOH, pH 7.5, and 1 mM EDTA) containing 2% Triton X-100. Insoluble material was removed by ultracentrifugation at 140,000 × g for 30 min, and the supernatant was loaded onto a hydroxypatite HTP gel column (Bio-Rad, Hercules, CA) equilibrated in AB containing 1% Triton X-100. Peak flow-through fractions containing ANT were collected. Recombinant C-90, C-Bag, Aha1, p23, and firefly luciferase were purified as described previously (Young and Hartl, 2000; Breychzy et al., 2003; Lotz et al., 2003; Young et al., 2003).

Chaperone–ANT Complexes

RL was desalted into buffer CG on NAP-10 columns or a Hi-Prep 26/10 fast desalting column (GE Healthcare). Purified ANT was chemically biotinylated.
on cysteine side chains with maleimide PEQ-biotin (Pierce Chemical, Rock-
ford, IL) for 3 h at room temperature, and excess biotin was removed with
NAP-10 columns equilibrated in buffer MT (100 mM NaCl, 10 mM HEPES-
KOH, 1 mM EDTA and 0.1% Triton X-100). Biotinylated ANT (ANT-B)
was labeled to streptavidin (Pierce Chemical) for 1 h. The
ANT-B was washed twice with buffer CG to remove stabilizing detergent, and
it was reconstituted by incubation with 50% RL in buffer CG, supplemented
with 2 mM ATP. After 15 min at room temperature, the reactions were
terminated with 1 mM methionine and adjusted to 250 mM sucrose. Typical
traits of the preproteins were performed with the TNT-coupled RL system with
SP6 or T7 promoters. Cell-free translations of
ANT were performed with the TNT-coupled RL system with SP6 polymerase (Promega), and they were
analyzed by SDS-PAGE and autoradiography or phosphorimager quantitation. To form
DJA complexes with ANT, methods established for the ligand binding domain of the glu-
corticoid receptor (Young and Hartl, 2000; Sondermann et al., 2001; Brychzy
et al., 2003) were adapted. To assay binding, ANT-B was prebound to steptavi-
din-agarose and washed with buffer CG as described above. Cell-free trans-
lation reactions of Hsc70, Hsp90, and DJA complexes were analyzed by gel filtration as described above. Where indicated, binding reactions
were performed in the presence of 20 µM C-A1, C-A2, C-A4 or C90, or 4 µM Aha1. To assay dissociation of complexes, cell-free translation reactions of
Hsc70 and Hsp90 were complexed with ANT-B as described above for 15 min
at room temperature, and complexes were reisolated and washed with buffer CG. Dissociation reactions consisting of buffer CG with or without 2 mM ATP, 4 µM C-Bag, 5 µM C90, or 20 µM C-A4 were incubated with the
complexes for 10 min at room temperature. Released and remaining immo-
bilized fractions were separated and analyzed by SDS-PAGE and autoradiog-
raphy or phosphorimager quantitation.

Hsc70 Activity

ATPase activities were measured as described previously (Young and Hartl, 2000; Brychzy et al., 2003). Briefly, reactions contained 4 µM Hsc70, 20 µM C-Bag, and the indicated concentration of each DJA protein, in buffer CG supplemented with 78 mM NaCl to maintain solubility of the DJA proteins, 4 mM MgCl2, 5 µM/µl ovalbumin, and 20% glycerol. Reactions were initiated by incubation at 30°C. At various times, aliquots were removed and terminated by adding 25 mM EDTA. Samples were separated by thin layer chromatography (TLC) on polyethylene-imine cellulose (Malinckrodt Baker, St. Louis, MO) developed in 0.5 M LiCl and 0.5 M formic acid. ADP
produced was quantified by phosphorimager analysis and linear rates calcu-
lated.

To assay refolding of firefly luciferase, the protein was denatured in buffer CG supplemented with 6 M guanidinium-HCl and 1 mM diithiothreitol for 15 min at room temperature. Refolding reactions were preassembled on ice, containing 4 µM Hsc70, 20 µM DJA protein, and 0.5 µM C-Bag, either with 1 mM ATP or treated with 0.1 µM/µl aphorase, in buffer CG supplemented with 39 mM NaCl, and warmed to 30°C immediately before use. Luciferase was diluted 1:10 into reactions to a final concentration of 5.4 mM and incubated at 30°C. Control reactions contained 50% RL in buffer CG supplemented with 39 mM NaCl and 1 mM ATP. At various times, aliquots were diluted 1:45 into luciferase assay reagent (Promega), and luciferase activity was measured in a Lumat LB 9507 luminometer (Berthold Technologies, Bad Wildbad, Ger-
many).

Cell Culture

Hela cells were maintained in DMEM containing 4.5 g/l glucose, 3 mg/ml pyruvate, 2 mM glutamine, and 10% fetal bovine serum (Invitrogen). Cells were transfected using Lipofectamine and PLUS Reagent (Invitrogen) in six-well plates with 4 µg of myc- and His-tagged DJA plasmid or vector alone, 0.5-1.5 µg of psV40-b-galactosidase, and 0.5 µg of either pCDNA3.1-lucif-
erase, or pCDGOS-gal, or pMV-luciferase with 0.5 µg of pGRL booster. Two days after transfection, cells were harvested and lysed by freeze-thaw in b-galactosidase Reporter lysate buffer (Promega). Lysates were cleared by centrifugation at 20,000 × g for 10 min and assayed for b-galactosidase and luciferase activities with the appropriate kits (Promega). Equal amounts of lysate were analyzed by immunoblots. The immunoblots were quantified with a Fujifilm LAS-1000 CH luminance image analyzer and the Image-Gauge software.
Mitochondrial Import of ANT

Mammalian ANT is an inner membrane metabolite carrier protein, and it was expected to follow the chaperone–Tom70 mitochondrial import pathway (de Marcos-Lousa et al., 2006), as has been established for PiC. Like many such carriers, ANT lacks a signal sequence, and it contains targeting information within its mature sequence, consistent with Tom70 dependence. ANT is composed almost entirely of six transmembrane helices, and its hydrophobicity suggested reliance on chaperones. Our previous work also showed that the Hsp90 inhibitor novobiocin blocked import of ANT, consistent with strong chaperone involvement (Fan et al., 2006). However, the relative importance of Hsc70 and Hsp90 to ANT import remained unknown, and this was addressed using previously established assays.

Both Hsc70 and Hsp90 dock onto a juxtamembrane TPR clamp domain of Tom70, a key step in the targeting of chaperone-bound preproteins. The C-terminal 16-kDa fragment of Hsp90 (C-90), containing the TPR clamp domain recognition motif, competes with Hsc70 and Hsp90 for binding to Tom70, thereby blocking Tom70-dependent import (Young et al., 2003). The import of ANT was therefore tested in the presence of excess C-90 competitor. Radiolabeled ANT was generated by cell-free translation in RL, and it was imported into isolated rat liver mitochondria. ANT is not proteolytically processed upon import, so the extent of import was assessed by resistance to externally added PK. Imported ANT was resistant to digestion (Figure 1A, lanes 2 and 6), but when import was abolished by valinomycin
disruption of the inner membrane potential, PK resistance was reduced to a low background level (Figure 1A, lanes 3 and 7). Addition of the C-90 competitor also reduced the amount of imported ANT, although not to the valinomycin background, whereas the addition of the control protein serum albumin had no effect (Figure 1A, lanes 8 and 9). Quantitation revealed that C-90 impaired ANT import to below 40% of control reactions (Figure 1A). This effect was similar to that observed for Tom70-dependent PiC (Young et al., 2003), whereas import of the Tom20-dependent Rieske ISP was only marginally affected. ANT thus seems to follow the Tom70 import route.

The individual contributions of Hsc70 and Hsp90 to ANT import were tested. Hsc70 can be dysregulated by an excess of its nucleotide exchange factor, the C-terminal domain of Bag-1 (C-Bag), which promotes the release of polypeptide substrate from Hsc70 (Sondermann et al., 2001; Mayer and Bukau, 2005). C-Bag inhibited the import of ANT to ~50% of control reactions (Figure 1B), and as established previously (Young et al., 2003), PiC import was inhibited to ~60%. The specific Hsp90 inhibitor GA (Pearl and Prodromou, 2006) was used to block Hsp90 function during import, and it partially diminished ANT import to ~72% of the control (Figure 1B). As reported previously (Young et al., 2003), GA inhibition of PiC import was also partial, to ~60% of the control (Figure 1B). Most importantly, combined inhibition of Hsc70 and Hsp90 by C-Bag and GA further reduced ANT import to ~40% of the control, similar to the established level of ~30% observed for PiC. In contrast, combined C-Bag and GA treatment had no inhibitory effect on ISP import (Figure 1B). In PiC, the combined effect of Hsc70 and Hsp90 inhibition indicated that the chaperones substitute for each other when one chaperone is inhibited (Young et al., 2003). For ANT, combined chaperone inhibition had an effect closer to that of Hsc70 inhibition alone, suggesting that ANT is more dependent on Hsc70 relative to Hsp90 for its import. Combined chaperone inhibition blocked the import of ANT to the same level as C-90 competition for Tom70 (Figure 1A and B), as expected from the chaperone docking mechanism.

Reconstitution of Chaperone–ANT Complexes

ANT can be purified in biochemical amounts from bovine heart (Pebay-Peyroula et al., 2003). Mass spectrometry analysis determined that the purified protein was identical in mass to that predicted by the cDNA sequence (data not shown), indicating that mature ANT should be reverted to its preprotein state by denaturation. Dilution of denatured ANT into RL should then reconstitute the chaperone–preprotein complexes involved in targeting. We confirmed that purified ANT could indeed be reimported into isolated mitochondria. First, purified ANT was radiolabeled by tyrosine iodination (Figure 2A, lane 6) and diluted into import reactions containing RL and mitochondria. After PK digestion, PK-resistant ANT was observed significantly above that in reactions treated with valinomycin (Figure 2A, lanes 7 and 8). The PK-resistant material in the valinomycin control reactions was similar to that normally observed in reactions using cell-free translated ANT (Figure 2A, lanes 1–5). In a second approach, purified ANT was chemically biotinylated using its cysteine side chains (Figure 2C, lanes 2–4, Coomassie stain). Import of ANT-B after dilution into reactions containing RL and mitochondria was detected by streptavidin blots (Figure 2A, lanes 9–11). A number of high-molecular-weight background bands were observed due to endogenous biotinylated mitochondrial proteins (data not shown). Nevertheless, imported ANT-B was detected above the valinomycin background after PK digestion (Figure 2A, lanes 9 and

Figure 1. Mitochondrial import of ANT. (A) ANT (input, lane 1) was radiolabeled by cell-free translation and imported into isolated rat liver mitochondria (+ mito, lanes 2–9). As a negative control, import was abolished with valinomycin (val, lanes 3 and 7). The true extent of import was determined by resistance to added PK (lanes 6–9). Import was assayed in the presence of 20 μM C-90 fragment, a competitor of chaperone-Tom70 interactions (C-90, lanes 4 and 8), or the same mass concentration of bovine serum albumin as a negative control (BSA, lanes 5 and 9). Reactions were analyzed by SDS-PAGE and autoradiography. Right, phosphorimager quantitation of import of ANT, PiC, and ISP are shown relative to control reactions. Standard deviations here, and in all figures, were determined from at least three independent experiments. (B) Import of ANT, PiC, and ISP was assayed upon inhibition with 5 μM C-Bag, treatment with 18 μM GA, or combined inhibition with both reagents, and the quantitation relative to control reactions is shown.
The ANT-B in each fraction was detected by SDS-PAGE and streptavidin blots. The elution volume corresponding to the fractions is marked (indicated in milliliters). (C) Molecular weight markers (indicated in kilodaltons) are shown (lane 1) and purified ANT (lane 2), ANT after the biotinylation reaction (ANT-B, lane 3) and removal of excess biotin by desalting (lane 4). ANT-B bound to streptavidin-agarose was incubated in reactions containing RL (lane 5) and ATP. Complexes were recovered and eluted with Laemmli loading buffer (lane 7). Negative control reactions contained no ANT-B or RL (lane 6) or no ANT-B (lane 8). Discrete bands labeled a, b, c, and the range between d and e, were analyzed on the same gel filtration column. Streptavidin blots detected a similar peak eluting around 13 ml (Figure 2B), in addition to void volume material. The reconstituted ANT-B complexes, therefore, reproduce those normally studied by cell-free translation as preimport intermediates, in molecular size as well as import competence.

To identify the components of chaperone–ANT complexes, ANT-B (Figure 2C, lane 4) was incubated with RL (Figure 2C, lane 5) as described above but in larger reactions. ANT-B complexes were then isolated with streptavidin-agarose and analyzed by total protein staining (Figure 2C, lane 6). Visible bands were subjected to tryptic digestion followed by mass spectrometry identification of peptides. Relevant proteins identified are summarized in Table 1. Although the exact rabbit sequences for many of the proteins are not known, the very high degree of conservation between chaperones and cochaperones within mammals (>97% identity) allowed unambiguous identification based on human, rat, mouse or pig sequences. Accession numbers are for human sequences, unless otherwise indicated.

The band at ~90 kDa (Figure 2C, lane 7, labeled a) was identified as a mixture of Hsp90α and Hsp90β, the two highly similar cytosolic forms of the chaperone. The heavy

Table 1. Proteins identified by mass spectrometry from reconstituted chaperone–ANT complexes (Figure 2C, lanes 7 and 8)

<table>
<thead>
<tr>
<th>Name</th>
<th>Gene</th>
<th>Protein accession no.</th>
<th>Molecular weight (kDa)</th>
<th>Peptides identified</th>
<th>Sequence coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsp90α</td>
<td>HSPCA</td>
<td>NP.005339</td>
<td>84.6</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>Hsp90β</td>
<td>HSPCB</td>
<td>NP.031381</td>
<td>83.2</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>Hsc70</td>
<td>HSPA8</td>
<td>NP.006588</td>
<td>70.8</td>
<td>63</td>
<td>40</td>
</tr>
<tr>
<td>Hop</td>
<td>STIP1</td>
<td>NP.006810</td>
<td>62.6</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Trp2</td>
<td>DNAJC7</td>
<td>NP.003306</td>
<td>55.4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>DJA2</td>
<td>DNAJA2</td>
<td>NP.005871</td>
<td>45.7</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>DJA4</td>
<td>DNAJA4</td>
<td>NP.061072</td>
<td>44.8</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>DJA1</td>
<td>DNAJA1</td>
<td>NP.001530</td>
<td>44.8</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Hip</td>
<td>ST13</td>
<td>NP.598487</td>
<td>41.6</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

Accession numbers are for human sequences, except Hip for which the mouse sequence was matched. Predicted molecular weights shown are usually lower than apparent molecular weights by SDS-PAGE.
Hsp90-dependent glucocorticoid receptor (Brychzy level in cells optimized the maturation of the Hsc70- and return substrates from Hsp90 to Hsc70, and its expression Hsp90 through its two TPR domains, and it activates the with ANT was not unexpected. Tpr2 binds both Hsc70 and Hsp90 –substrate complexes, and its presence in complexes and Toft, 2003; Young et al substrates (Chen and Smith, 1998; Scheufler et al. which is the major pathway for many Hsp90-dependent proteins were found (Table 1). Hop recognizes Hsc70 and Hsp90 as well as Hop, Tpr2, DJA1, DJA2, and DJA4, con- blots (Figure 3). The main components described above were detected in the reconstituted ANT-B complexes: Hsp90 and Hsc70 as well as Hop, Tpr2, DJA1, DJA2, and DJA4, confirming the mass spectrometry data.

Importantly, many other known cochaperones of Hsp90 and Hsc70 were not detected by mass spectrometry. These included the immunophilin FKBP52, the cyclophillin Cyp40 and the kinase-binding Cdc37, all of which have been re- ported to have general chaperone activity, in the sense of unfolded polypeptide binding (Bose et al., 1996; Freeman et al., 1996; Kimura et al., 1997). Also, the Hsp90 cochaperone p23 (Pearl and Prodromou, 2006), which stabilizes the sub- strate-binding ATP-bound state of Hsp90, was not detected. p23 is common to many Hsp90 complexes, and it has intrinsic chaperone activity. The presence or absence of these proteins was tested independently by immunoblots. First, immunoblots unambiguously detected p23 in chaperone–ANT complexes but not in negative control reactions (Figure 3). It is possible that the small size (predicted molecular weight 18 kDa) and strong acidic charge of p23 limited the identifiable tryptic peptides derived from the protein or that the poorly staining protein was simply missed in the exci-

Figure 3. Components of chaperone–ANT complexes. Complexes associated with ANT-B were reconstituted in RL and coprecipitated as in Figure 2C, and then they were analyzed by immunoblots with antibodies against the indicated proteins. Samples shown are total RL (lane 1), ANT-B complexes (lane 2), and negative control reactions lacking ANT-B (lane 3).
complexes suggests a substantial degree of specificity in complex formation.

DJA Interaction with Preprotein

We were struck by the presence of three related DJA proteins in the chaperone–ANT complexes. Although all three were present, it was possible that one in particular might be more effective than the others. For example, the higher number of peptides derived from DJA4 might suggest a greater involvement of that cochaperone with preprotein complexes. Alternatively, there might be subtler differences between them, such that they function together in import, and perhaps other biological processes. In the yeast *S. cerevisiae*, the two cytosolic Hsp40-related proteins Ydj1 and Sis1 have distinct biological roles (Johnson and Craig, 2001; Fan et al., 2004); however, Ydj1 is orthologous to the three human DJA proteins are well conserved, and the greatest divergence in sequence is within the expected substrate binding region. This suggested that one difference between the DJAs might be the range of substrates bound, or the strength of binding. However, sequences outside the J-domains of some proteins have been implicated in Hsc70 interactions, so there might also be differences between the DJAs in the activation of Hsc70. We therefore addressed these possibilities systematically.

The binding of the DJAs to the polypeptide substrate ANT was tested first. The polypeptide binding specificities of the human DJAs are so far unknown. For ease and accuracy of quantitation, we adapted a coprecipitation assay used to study preprotein interactions with Tom70 (Young et al., 2003; Fan et al., 2006). DJA1, DJA2, and DJA4 were purified as N-terminally His-tagged proteins. Radiolabeled ANT produced by cell-free translation was incubated with the DJAs, and PiC was added as a negative control. The DJAs were then isolated with nickel-Sepharose, and the associated ANT was quantified. All three DJAs bound ANT at levels above the low background binding, but DJA2 bound noticeably less preprotein than DJA1 or DJA4 (Figure 4A, lanes 2–5). Quantitation showed that DJA2 binding of ANT was ~40% of DJA1 binding, whereas DJA4 binding was not significantly different from that of DJA1 (Figure 4B). For comparison with another Tom70-dependent preprotein, the assay was applied to PiC (Figure 4, A and B). Again, DJA1 bound PiC well, and DJA2 seemed to have the poorest binding, ~40% of DJA1. However, DJA4 bound PiC relatively poorly, at ~60% of DJA1 binding. These data suggested that the DJAs differ in their binding of polypeptides.

The full-length DJA proteins might bind polypeptides in a dynamic equilibrium, because their J-domains promote the
transfer of polypeptides to Hsc70. The association of ANT and Pic with the DJAs might then depend on interactions with Hsc70 as well as the actual affinity of binding to the DJAs. To directly address the level of polypeptide binding, truncation mutants of the DJAs lacking the N-terminal J-domain were purified. The deletion mutants, C-A1 (residues 98-397 of DJA1), C-A2 (residues 100-412 of DJA2), and C-A4 (residues 99-397 of DJA4), were also N-terminally His-tagged, and they contained the complete zinc finger and C-terminal regions of the DJAs (Figure 4C). The binding of cell-free translated ANT and Pic to the mutants was tested as described above. C-A1 was found to bind strongly to both ANT and Pic, and C-A2 binding to both polypeptides was <50% of C-A1 binding (Figure 4D). C-A4 bound slightly less ANT than C-A1 and significantly less Pic, at ~60% relative to C-A1. Overall, the interactions of the truncation mutants with polypeptides were similar to those of the full-length DJAs, suggesting that Hsc70 interactions did not greatly change the substrate binding profiles of full-length versus truncated DJAs. These results confirmed that the DJAs diverge in polypeptide binding, with DJA1 apparently binding the highest amount of preprotein. Also, as observed for DJA4, different polypeptides can be bound to varying degrees.

We wanted to evaluate the importance of DJA binding to preprotein for mitochondrial import. Immunodepletion of the DJAs from RL could not be achieved with the available antibodies (data not shown). So, we reasoned that the truncated DJAs should act as dominant-negative inhibitors of wild-type DJA function, by competing for the same binding sites in preprotein but disallowing transfer to Hsc70. Inhibition of Hsc70 binding should then impair the Tom70 docking step required for import. Alternatively, Hsp40 can activate substrate binding by Hsc70 without strongly interacting with substrate (Minami et al., 1996; Cintron and Toft, 2006). If Hsp40 or some mechanism other than the DJAs was sufficient for Hsc70 binding, the truncated DJAs should have less effect. Therefore, C-A1, C-A2, and C-A4 were added at 20 μM to mitochondrial import reactions of ANT and Pic. Note that Pic is proteolytically processed upon import to produce a faster migrating band on SDS-PAGE (Zara et al., 1992), but the extent of true import was quantified as described for ANT by resistance to externally added PK (Figure 4E). Indeed, all three mutants clearly reduced import of ANT and Pic to between 40 and 60% of control reactions (Figure 4F). The partial but significant inhibition of import approached the level observed with the C-90 competitor or combined Hsc70 and Hsp90 inhibition in Figure 1. As expected, the mutant DJAs had little effect on the Tom20-dependent import of ISP (Figure 4F). For ANT and Pic, it seems that the effect of each dominant DJA mutant cannot be overcome by the other DJA proteins or J-domain cochaperones present in the lysate. These data suggest that each of the DJAs function in the Tom70 import pathway.

Hsc70–Preprotein Interactions

To further test the importance of the DJAs for Hsc70 binding to preprotein, the binding of Hsc70 to purified ANT was monitored over time. As established in previous work on Hsc70 and Hsp90 interactions with the glucocorticoid receptor (Young and Hartl, 2000; Sondermann et al., 2001; Brychzy et al., 2003), radiolabeled Hsc70 generated by cell-free translation was used for ease and accuracy of quantitation. Although unlabeled Hsc70 is in excess in the binding reactions, the radiolabeled protein acts as a tracer and matches the behavior of unlabeled protein. At different times after addition to ANT-B, the preprotein was recovered with streptavidin-agarose, and bound Hsc70 was quantified. Hsc70 bound with a fast initial increase and reached a maximum at ~10 min (Figure 5A). When C-A1, C-A2, and C-A4 were added to the reactions at 20 μM, binding of Hsc70 was clearly diminished (Figure 5A). Moreover, C-A2 was the most inhibitory, reducing Hsc70 binding as early as 1 min into the reaction, with a final level of ~30% of the control reaction. C-A1 and C-A4 were slightly more moderate in their effect, with inhibition visible by 2–4 min and a final Hsc70 level of ~60% of the control. Thus, the truncation mutants directly inhibit Hsc70 interactions with preprotein, albeit to different degrees.

The dominant mutants seem to compete with wild-type DJAs for polypeptide, preventing the wild-type cochaperones from initiating Hsc70 binding (Cintron and Toft, 2006).
The partial effects of the mutants suggested that competition with the wild-type DJAs was not complete. This in turn implied that the DJAs have distinct sets of binding sites that only partly overlap with each other. Interestingly, C-A2 was the strongest inhibitor of Hsc70 binding (Figure 5A), but it seemed to bind less overall preprotein than C-A1 or C-A4 (Figure 4D). We suggest that C-A2 might bind fewer sites within the polypeptides, but these sites are relatively more important for Hsc70 binding. In contrast, C-A1 and C-A4 might bind more, but less distinctly important, sites. The overall result is that the three mutants inhibit preprotein import to a similar degree (Figure 4F).

To confirm that the Hsc70–preprotein complexes observed in these experiments were formed normally, their nucleotide dependence was assayed. In previous experiments with the glucocorticoid receptor, the C-Bag nucleotide exchange factor promoted Hsc70 dissociation from isolated complexes in an ATP-dependent manner (Sondermann et al., 2001). Following a similar approach, Hsc70–ANT complexes were isolated after 15 min of binding, and then they were incubated under varying conditions in the absence or presence of ATP. Dissociated and bead-bound fractions were analyzed separately. As observed previously, ATP alone did not promote complex dissociation greatly over buffer without ATP (Figure 5B). As another negative control, the purified Hsp90-specific cochaperone p23 also did not strongly dissociate Hsc70. However, C-Bag markedly promoted Hsc70 dissociation but only in the presence of ATP (Figure 5B). Thus, the Hsc70–preprotein complexes inhibited by the DJA mutants seem to be normally functional complexes.

DJA Heterocomplex Formation

To further examine the formation of DJA–preprotein complexes, we asked whether different DJAs could bind to a polypeptide simultaneously. Experimental approaches described above were modified for this purpose. Chaperone complexes with ANT-B were formed by its dilution into RL with ATP, as performed for the gel filtration analysis of Figure 2B, but with the addition of different cell-free translated, radiolabeled DJA proteins into the binding reaction. Each reaction was then allowed to bind to a different purified His-tagged DJA protein identically to Figure 4A. Complexes were reisolated with nickel-Sepharose and analyzed for the presence of the radiolabeled DJA. In this manner, DJA1 was detected in chaperone–ANT complexes recovered with DJA2 and DJA4, at levels above the low background binding (Figure 6A). Similar, DJA2 was recovered with DJA1 and DJA4, and DJA4 with DJA1 and DJA2. Therefore, binding of each DJA cochaperone does not seem to be exclusive of the others, and they can form heterocomplexes with substrate.

It was also possible that the different DJA cochaperones bind polypeptide substrate in a defined order, or with a characteristic kinetic. To investigate this, ANT-B complexes with chaperones were formed in RL, and they were reisolated at different times as in Figure 5A; radiolabeled DJA proteins generated by cell-free translation were used to monitor their binding to complexes. All three of the DJA proteins showed the same fast initial rate of binding, with complex formation essentially complete in 5 min (Figure 6B). Binding of the DJAs to the preprotein was as fast, if not faster than, the rate of Hsc70 binding (compare Figure 6B with 5A), consistent with the expected mechanism in which the Hsp40-related cochaperones activate substrate binding by Hsc70. Together with the formation of DJA heterocomplexes (Figure 6A), these results suggest that the DJA cochaperones do not have a sequential binding mechanism where one DJA displaces another previously bound DJA. So, it is likely that the DJAs act independently of each other to bind substrate and activate Hsc70.

DJA Activation of Hsc70

In addition to binding polypeptides, the DJAs should activate the Hsc70 ATPase through their J domains. To further explore differences between them, we measured the steady-state Hsc70 ATPase rates supported by the three full-length DJAs. J-domains specifically stimulate ATP hydrolysis to ADP by Hsc70, but not the exchange of ADP for ATP, so an excess of the C-Bag exchange factor was used to ensure that ATP hydrolysis was rate limiting (Sondermann et al., 2001; Mayer and Bukau, 2005). Purified Hsc70 at 4 μM was supplemented with 20 μM C-Bag and increasing concentrations of the DJAs. All DJAs could stimulate Hsc70 ATPase activity above its basal rate of <1 min⁻¹ (Figure 7A). Interestingly, at

![Figure 6. DJA heterocomplex formation. (A) DJA1, DJA2, and DJA4 were radiolabeled by cell-free translation (input, lanes 1, 5, and 9). ANT-B was diluted into reactions containing RL, ATP, and each radiolabeled DJA, as described in Figure 2B. Complexes were coprecipitated (recovery) with nickel-Sepharose and the indicated His-tagged DJA protein, as described in Figure 4A. Recovered material was analyzed by autoradiography. (B) Top, DJA1, DJA2, and DJA4 were radiolabeled by cell-free translation and coprecipitated with ANT-B as described in Figure 5A. Bottom, averaged quantitation of time courses of DJA binding are shown.](Image)
all concentrations above 1 μM, DJA1 was clearly more efficient at ATPase stimulation than DJA2 and DJA4, which were similar to each other (Figure 7A). At 8 μM DJA1, Hsc70 activity reached around 1 min\(^{-1}\), in line with previously reported rates, whereas DJA2 and DJA4 at the same concentrations supported rates of 1–5 min\(^{-1}\). Our results are in the same range as reported previously (Terada and Mori, 2000; Hafizur et al., 2004), with the difference that in our hands, DJA4 is somewhat more active than was thought. Although the difference between DJA1 and the other two may not seem great, in a finely balanced biological system, the functional consequences of such variation may be amplified.

Also, differences between DJA activation of Hsc70 seem to be greatest (at least 2-fold) in the concentration range of 2–4 μM DJAs, which lies closest to the estimated cellular concentration of the DJAs, and the estimated ratio to Hsc70 in cells.

Another property of the DJAs was their expected ability to support polypeptide refolding by Hsc70. A polypeptide substrate commonly used to study Hsc70 function is firefly luciferase, which has a sensitive and reproducible enzymatic assay. Purified Hsc70 has been shown to assist luciferase refolding in numerous studies (Hohfeld et al., 1995; Freeman and Morimoto, 1996; Minami et al., 1996; Hohfeld and Jentsch, 1997; Terada et al., 1997; Luders et al., 2000; Terada and Mori, 2000). However, in most cases the stress-inducible cochaperone Hsp40 was used, and a direct comparison between all three DJAs with Hsc70 has not yet been reported. Thus, we tested the refolding of luciferase after dilution out of 6 M guanidine into reactions containing 4 μM Hsc70 and 4 μM of each DJA in turn, as well as 0.5 μM C-Bag, which was found to be optimal for refolding at this concentration (data not shown). Refolding reactions contained 1 mM ATP, whereas negative control reactions contained no ATP, and they were treated with apyrase to destroy any endogenous ATP. 50% RL with ATP served as a positive control. Surprisingly, DJA1 seemed to be the least effective in assisting refolding (Figure 7B), despite providing the strongest stimulation of the Hsc70 ATPase activity (Figure 7A). Refolding with DJA1 reached slightly above 20% of the RL control after 60 min (Figure 7B). In marked contrast, DJA2 was very efficient at promoting luciferase refolding, supporting a refolding level essentially the same as the RL control. DJA4, in contrast, was also relatively weaker in promoting refolding, although the final activity reached was ~40% of the RL control and somewhat higher than with DJA1. In all cases, the negative control reactions lacking ATP produced no significant refolding (Figure 7B). Overall, the divergent refolding function of the DJAs may result from a more complex combination of differences in polypeptide binding, Hsc70 ATPase stimulation, and perhaps other factors. In an earlier report, DJA1 and DJA2 promoted luciferase refolding to similar degrees (Terada and Mori, 2000), and the divergence from our results seems due to apparently small differences in experimental conditions. It might be that DJA2 is more robust and able to support refolding under a broader range of conditions. The variability of the results may also be taken as further evidence that minor differences between the DJAs might be amplified depending on the biological context.

DJA Function in Cells

The refolding of a guanidine-denatured protein can be distinct from the cellular folding of the same protein during its synthesis on ribosomes. Experiments in mammalian and S.
M. K. Bhangoo et al.

Figure 8. DJA function in cells. (A) HeLa cells were transfected with plasmids expressing luciferase from a CMV promoter, β-galactosidase from an SV40 promoter, and either empty vector or the indicated myc-tagged DJA proteins under a CMV promoter. Two days after transfection, cells were harvested and equivalent amounts of lysate analyzed by immunoblots for the indicated proteins (top) and by enzymatic activity assays (bottom). In blots for DJA1, DJA2, and DJA4, positions of the endogenous and overexpressed myc-tagged proteins are marked. Bands cross-reacting with the antibodies are marked with an asterisk; in cells transfected with noncoding vector, around a threefold increase (Figure 8A). Levels of DJA2 and DJA4 also enhanced activity around 2.5-fold above the control. The activity of cotransfected β-galactosidase controlled by a simian virus 40 (SV40) promoter showed comparatively little variation whether the DJAs were expressed (Figure 8A), and it was used to correct for transfection efficiency. It was notable that the amount of luciferase protein detected by immunoblot seemed to be the same between the control and DJA-expressing cells (Figure 8A). This suggested that the DJAs increased the enzymatic activity of the luciferase relative to its total amount, that is, the specific activity of luciferase. Such an effect would be expected if the folding of the model protein is enhanced. The folding of luciferase newly synthesized in the cells is also distinct from its refolding from the guanidine-denatured state observed in Figure 7B. The change in apparent activity but not absolute expression also argues against a nonspecific effect on transcription or translation.

To confirm these observations, cells were transfected with a vector expressing luciferase controlled by a GRE, together with a constitutively expressed glucocorticoid receptor lacking the chaperone-dependent ligand-binding domain (GR-ΔLBD). This combination is known to provide constitutive, hormone-, and Hsp90-independent expression of the luciferase gene (Hollenberg et al., 1987; Hollenberg and Evans, 1988). When the DJA cochaperones were overexpressed, a pattern of luciferase activity was observed similar to that of the above-mentioned experiments. All three produced significant increases in luciferase activity, with DJA1 being most effective at more than threefold of the control (Figure 8B). DJA2 and DJA4 were somewhat less effective at more than threefold of the control (Figure 8A). Expression of DJA2 and DJA4 also enhanced activity around 2.5-fold above the control. The activity of cotransfected β-galactosidase controlled by a simian virus 40 (SV40) promoter showed comparatively little variation whether the DJAs were expressed (Figure 8A), and it was used to correct for transfection efficiency. It was notable that the amount of luciferase protein detected by immunoblot seemed to be the same between the control and DJA-expressing cells (Figure 8A). This suggested that the DJAs increased the enzymatic activity of the luciferase relative to its total amount, that is, the specific activity of luciferase. Such an effect would be expected if the folding of the model protein is enhanced. The folding of luciferase newly synthesized in the cells is also distinct from its refolding from the guanidine-denatured state observed in Figure 7B. The change in apparent activity but not absolute expression also argues against a nonspecific effect on transcription or translation.

We next addressed the effect of the DJAs on a Tom70-dependent mitochondrial preprotein in cells. The mitochondrial import of a transiently transfected 3HA-tagged PiC was previously shown to be sensitive to inhibition of Hsp90 by geldanamycin, which reduced the levels of mature, proteolytically processed PiC (Young et al., 2003). So, the same
Hsp90–Preprotein Interactions

In the analysis of chaperone–preprotein complexes, Hsp90 and its co-chaperone p23 were positively identified. Hsp90 seems to have a lesser, although still significant role in the import of ANT, and we next addressed the characteristics of the DJAs in promoting the import of the transfected PiC.

In the live cell experiments, transient overexpression of DJA1 was typically less than that of DJA2 and DJA4, as judged by detection of the myc-tags (Figure 8, A and C). DJA1 still showed the greatest effect on luciferase activity and the accumulation of PiC, within the limits of immunoblot quantitation. Overall, our in vitro and live cell results suggest that the DJA proteins differ in separate aspects of their function—polypeptide binding, Hsc70 ATPase stimulation, assistance of protein folding or refolding, and mitochondrial import—and that no single DJA is superior in all aspects.

Hsp90–Preprotein Interactions

In the analysis of chaperone–preprotein complexes, Hsp90 and its co-chaperone p23 were positively identified. Hsp90 seems to have a lesser, although still significant role in the import of ANT, and we next addressed the characteristics of its complex formation. Performed as described above for import of ANT, and we next addressed the characteristics of

Figure 9. Hsp90–preprotein interactions. (A) Top, Hsp90 was radiolabeled by cell-free translation and coprecipitated with ANT-B as described in Figure 5A. Reactions contained either no addition, or 20 μM purified C-90 or 4 μM Aha1. Bottom, quantitation of time courses of Hsp90 binding is shown. (B) Top, cell-free translated Hsp90 was coprecipitated with ANT-B, and the dissociation of complexes monitored as described in Figure 5B. Dissociation reactions, with or without ATP, contained buffer alone, or 5 μM purified p23 or C-Bag, or 4 μM Aha1, or 5 μM p23 and 4 μM Aha1. Bottom, quantitation of dissociation reactions.

The Hsp90 cochaperone Aha1 was recently found to stimulate the Hsp90 ATPase activity by binding to the central region of the chaperone (Panaretou et al., 2002; Lotz et al., 2003). Aha1 has been hypothesized to promote dissociation of Hsp90 from polypeptide substrate, but no direct experimental demonstration of this has yet been reported. Although Aha1 was not found to be a component of our chaperone–ANT complexes (Table 1; data not shown), it was possible that a dissociation factor would not be stably bound due to its function. We therefore asked what effect, if any, Aha1 would have on Hsp90 binding reactions with ANT. Intriguingly, 4 μM Aha1 caused a transient increase in the amount of Hsp90 bound, followed by a progressive decline (Figure 9A). The peak of Hsp90 binding in the presence of added Aha1 varied between 20 and 60% above the final level of control reactions, and it was reached by 4–6 min; because the reason for the increase is unclear, a conservative representative time course experiment is shown. Final levels of Hsp90 binding with Aha1 continued to drop below 70% of the control after 10 min. Addition of p23 had no effect on Hsp90 binding (data not shown). These data agree in part with a function of Aha1 in dissociating Hsp90 complexes;
however, the two-phase Hsp90 binding curve suggests that the dynamic equilibrium of the complexes may be changed over time by Aha1.

Next, the dissociation of Hsp90–preprotein complexes was assayed. Hsp90 complexes with ANT-B were formed for 15 min as described above and isolated, and then they were incubated in the presence of various purified proteins as described for Hsc70. The absence or presence of ATP had no effect on Hsp90 dissociation when no protein was added (Figure 9B). As a negative control, the Hsc70-specific co-chaperone C-Bag also had no effect, independent of nucleotide presence. The co-chaperone p23 at 5 μM favored some dissociation of Hsp90 in the presence of ATP (Figure 9B). This effect was less pronounced than previously observed with glucocorticoid receptor complexes (Young and Hartl, 2000; Brychzy et al., 2003), under somewhat different experimental conditions. Aha1 at 4 μM had a slightly stronger ability to promote Hsp90 dissociation, again requiring ATP (Figure 9B). Combined treatment with p23 and Aha1 seemed to reduce dissociation to the level of the buffer control (Figure 9B), suggesting there was no synergy of function between the co-chaperones and that they might counteract each other. This would be consistent with their overlapping binding sites on Hsp90 (Ali et al., 2006). The C-90 fragment had no dissociation effect on Hsp90–ANT complexes (data not shown), indicating that once Hsp90 bound preprotein its binding became independent of Hsc70 and Hop. Our results suggest that Aha1 may indeed act as a substrate dissociation factor for Hsp90. p23 may also aid dissociation in addition to stabilizing Hsp90 in chaperone–preprotein complexes.

DISCUSSION

Our results identify a basic set of proteins complexed with Tom70-dependent mitochondrial preproteins in the cytosol before import: Hsp90 and Hsc70, Hop, Tpr2, DJA1, DJA2, DJA4, and p23. These components seem to be specifically bound, because a number of other chaperones and co-chaperones are excluded from such complexes. The co-chaperones bound outline what is thought to be a core Hsc70–Hsp90 system or pathway (Young et al., 2004), starting with the Hsp40-related DJAs that initiate Hsc70 binding, progressing via Hop to Hsp90 binding, which is stabilized by p23. The core system components were also found in a recent proteomic analysis of chaperone-associated misfolded CFTR chloride channels, with several additional co-chaperones including Cdc37 and FKBP8 (Wang et al., 2006). In our chaperone–preprotein complexes, the presence of multiple DJA proteins may be seen as elaborations to the core system (only DJA1 was associated with the misfolded CFTR). The DJA proteins bind polypeptides themselves, and probably they contribute to the solubility of preproteins as well as initiate Hsc70 binding. We propose that the advantage of having three DJAs probably comes from the partial specialization of each, as discussed in more detail below. Tpr2 is a further addition to the core system, and it is usually not observed as a major component of Hsp90 complexes. It is likely that Tpr2 helps maintain the amount of Hsc70 bound to preproteins, in addition to Hsp90.

Interestingly, many co-chaperones that are excluded from the chaperone–preprotein complexes are thought to associate specifically with certain classes of Hsp90-bound substrates at later stages of their chaperone pathway. For example, FKBP52 is commonly associated with Hsp90-bound steroid hormone receptors, Cdc37 with folding intermediates of kinases, and UNC-45 (which is found in mammals as well as the original Caenorhabditis elegans source) with myosins (Pratt and Toft, 2003; Young et al., 2004). The exclusion of such co-chaperones from preprotein complexes may reflect biological parsimony. Preproteins do not need to be assisted to a specific native state, so the specialized chaperoning functions of the substrate-specific co-chaperones would not be required. Rather, preproteins must be maintained in a soluble form capable of being imported into mitochondria. This requirement may be fulfilled largely by the Hsc70 and Hsp90 chaperones themselves. Targeting commences with the docking of Hsc70 and Hsp90 to the Tom70 import receptor, and ATPase cycling by Hsp90 and most likely Hsc70 assist preprotein translocation across the outer membrane. Thus, the cytosolic co-chaperones complexed with preproteins would act mainly to support the binding of Hsc70 and Hsp90 in a balance optimal for import.

A conceptual function not found in the chaperone–preprotein complexes is a mitochondrial-specific sorting factor. This is perhaps not a great surprise: a mitochondrial equivalent of the secretory Signal Recognition Particle has proven elusive over many years. Most earlier approaches to finding new cytosolic factors focused on Tom20-dependent preproteins with classical leader peptides. However, the major import receptor Tom20 seems designed to recognize the structural features of amphipathic α-helical leader peptides themselves (Schleiff et al., 1997; Abe et al., 2000; Yano et al., 2004). The situation is less clear for Tom70-dependent preproteins, as the targeting information read out is still largely undefined. There is evidence that Tom70 contacts preproteins directly, and a recent crystal structure of S. cerevisiae Tom70 revealed a potential preprotein-binding groove (Brix et al., 2000; Wu and Sha, 2006). Our results support the idea that sorting of Tom70-dependent preproteins from other polypeptides is accomplished solely by Tom70 within the outer membrane translocase.

The discovery of the three cytosolic DJA co-chaperones in preprotein complexes suggested either that one DJA was particularly suited to aiding preprotein import and the others were less important or that each DJA might have characteristics favorable to import of the preproteins. Our results are most consistent with the latter idea. The truncated DJAs lacking J domains seem to act as dominant inhibitors and to impair mitochondrial import in vitro to the same level (Figure 4, E and F). When different biochemical properties of the DJAs are compared, as summarized in Table 2, variations between them become apparent, but without one standing out consistently above the others. DJA1 is the strongest activator of the Hsc70 ATPase, and it binds the greatest amounts of the preproteins. DJA2 is most efficient at promoting luciferase refolding, and its truncation mutant blocks

<table>
<thead>
<tr>
<th>DJA1</th>
<th>DJA2</th>
<th>DJA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Plus signs are assigned according to the rank order of each DJA for quantitative activity measured.
Hsp70–preprotein binding most severely. DJA4 discrimi-
nates between ANT and PIC in the levels of preprotein
bound, and moderately promotes luciferase refolding. In
live cells, DJA1 is more effective in promoting new luciferase
activity and mitochondrial import of PIC. The distribution of
properties forms a unique profile for each of the DJA pro-
teins. DJA1 might be more important, based on new lucifi-
erase folding in live cells; in contrast, DJA2 might be con-
sidered the most biochemically active, if the luciferase
refolding function reflects general effectiveness. However, it
seems more likely that different polypeptides will be opti-
mally handled by different DJAs, or combinations of DJAs.

We propose that this partial specialization between the
DJA cochaperones provides an advantage above a single
Hsp40-related factor. For each polypeptide substrate,
whether it needs to be folded or transported, an optimal
combination of DJA properties might be postulated: on- and
off-rates of polypeptide binding, sites of binding, rates of
transfer to Hsc70. Unlike with a single DJA, the three DJAs
will permit a larger, more complex range of polypeptides, as
found in the cytosol of higher animals, to be productively
chaperoned. Binding of each DJA to a polypeptide seems to
be independent of other DJAs, suggesting that they can act
in any combination. Some polypeptides may be relatively
unrestricted as to which DJA can assist their folding. Other
polypeptides may have a stringent requirement for one
from the others. Still other polypeptides may require
two or all three of the DJAs. Further insight might eventu-
ally be derived from more comprehensive analyses of the
range of polypeptides bound by each DJA.

The fourth J domain protein in the chaperone–preprotein
complexes was Tpr2. Unlike the DJAs, Tpr2 does not have a
substrate-binding domain or intrinsic chaperone activity.
Tpr2 is thought to trigger Hsc70 binding to substrate while
dissociating of Hsp90–substrate interactions, result-
ing in the retrograde transfer of substrate between the
chaperones (Brychzy et al., 2003). The cochaperone Hop
seems to be important for recruiting Hsp90 to Hsc70–bound
preprotein but not for maintaining Hsp90 binding (Figure 9),
similar to the expected chaperone pathway. Hop and Tpr2
thus form an opposing pair. They bind both Hsp90 and
Hsc70 through their TPR clamp domains, and they likely
function to maintain the optimal balance between the cha-
perones in preprotein complexes. Docking of the chaperones
to the TPR clamp domain of Tom70 would displace both
Hop and Tpr2 from preprotein complexes. Replacement of
the cytosolic TPR cochaperones with the membrane-inte-
grated Tom70 may help switch the function of the chaper-
ones from preprotein targeting to preprotein translocation
across the mitochondrial outer membrane.

The Hsp90 cochaperones p23 and Aha1 may form another
opposing pair. Both seem to favor the closed ATP-bound
form of Hsp90, but p23 slows the ATPase cycle, whereas
Aha1 accelerates it (Pearl and Prodromou, 2006). The func-
tional consequences of these regulatory cochaperones are
less clear. p23 enhances Hsp90-dependent folding, and it is
thought to stabilize substrate-binding by Hsp90, yet after
ATP hydrolysis, p23 promotes Hsp90 dissociation from
substrate (Young and Hartl, 2000; Sullivan et al., 2002;
Morishima et al., 2003). Aha1 also enhances Hsp90 function
in vivo, but it has been proposed to also dissociate Hsp90
from substrate (Panaretou et al., 2002; Lotz et al., 2003). Our
results now suggest that Aha1 is more efficient than p23 at
triggering the ATP-dependent dissociation of Hsp90–pre-
protein complexes. However, the unexplained effect of Aha1
on the kinetics of Hsp90 binding to preprotein suggests it
has an additional effect on the nature of Hsp90 complexes
over time. Regardless, both p23 and Aha1 seem to regulate
Hsp90 interactions with polypeptides, in our case with pre-
proteins. In parallel to the DJAs, they may provide another
example of how minor differences in an apparently similar
function are combined for optimal biological efficiency.

ACKNOWLEDGMENTS

We thank Christoph Kloeckner for preliminary experiments, Megan Kooistra for assistance with protein purifications, and Francois Bouthillier for technical support. This work was supported by a Canadian Institutes of Health Re-
search operating grant, the Canadian Foundation for Innovation, and the Ministry of Education of Quebec. A.C.Y.F. is supported by the Canadian
Institutes of Health Research Training Program in Chemical Biology. J.C.Y. is a
Canada Research Chair in Molecular Chaperones.

REFERENCES

Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T.,

Prodromou, C., and Pearl, L. H. (2006). Crystal structure of an Hsp90-nucle-

resolution structural study of two human Hsp40 chaperones in solution.
DJA1 from subfamily A and DJB4 from subfamily B have different quaternary

Brix, J., Ziegler, G. A., Dietmeier, K., Schneider-Megener, J., Schulz, G. E.,
and Pfanner, N. (2000). The mitochondrial import receptor Tom70. Identifi-
cation of a 25 kDa core domain with a specific binding site for preproteins. J. Mol.
Biol. 303, 479–488.

Brychzy, A., Rein, T., Winklhofer, K. F., Hartl, F. U., Young, J. C.,
and Obergmann, W. M. (2003). Cofactor Tpr2 combines two TPR domains and a
J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 22, 3615–
3623.

70 (Hsp70) and hsp90 chaperone machinery. J. Biol. Chem. 273, 53914–53200.

Cintrom, N. S., and Toft, D. (2006). Defining the requirements for Hsp40 and

mitochondrial inner-membrane proteins: conformation matters. Trends

targeting and outer membrane translocation steps of Tom70-mediated mito-

modules contribute to specificity of type I and type II Hsp40 cellular

Freeman, B. C., and Morimoto, R. I. (1996). The human cytosolic molecular
chaperones hsp90, hsp70 (hsc70) and hdd1 have distinct roles in recognition

machines: chaperone activities of the cytoplasm Cyp-40 and the steroid

lization of chaperone activities of Hsp70 and Hsp70–2 by a mammalian Dnaj/

by the anti-apoptotic protein BAG-1. EMBO J. 16, 6209–6216.

involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83, 589–598.

Hollenberg, S. M., and Evans, R. M. (1988). Multiple and cooperative trans-

ization of DNA-binding and transcriptional activation functions in the human

Young, J. C., and Hartl, F. U. (2000). Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J. 19, 5930–5940.
