A color-enhanced image made with liquid crystal polarized light optics reveals birefringent kinetochores in a spermatocyte from the crane fly Nephrotoma suturalis during anaphase A of meiosis I. In these cells, sex univalents lag at the equator as autosomal half-bivalents segregate to opposite poles. Kinetochores of these lagging chromosomes connect them to both poles and are convenient targets for laser microsurgery to release the chromosomes from their bipolar connections. The results of such manipulations suggest that kinetochores can exhibit pac-man motility even though their normal behavior is dominated by traction fiber mechanics. The unleashing of kinetochore motility through loss of resistive force is evidence for the emerging model that kinetochores are subject to tension-sensitive regulation. See the article by LaFountain et al. on p. 3133 of this issue of MBoC. (Image: James LaFountain, Department of Biological Sciences, University at Buffalo, Buffalo, NY, and Marine Biological Laboratory, Woods Hole, MA)