The Golgi ministacks induced by depolymerizing the microtubule cytoskeleton. HeLa cells transiently expressing a trans-Golgi marker, GalT-mCherry (red), and a trans-Golgi network (TGN) marker, Vamp4-GFP (green), were treated with nocodazole and processed for immunofluorescence labeling of endogenous GM130 (blue), a cis-Golgi marker. The mammalian Golgi complex organizes as ribbons that comprise laterally linked Golgi stacks. Upon microtubule depolymerization by nocodazole treatment, the Golgi complex loses its ribbon organization and becomes many Golgi ministacks. In the image, the Golgi ministacks clearly display linear and polarized distribution of cis (blue), trans (red), and TGN (green) markers. In the paper on p. 848 of this issue of MBoC, Tie et al. report their discovery of a novel method to quantitatively localize a Golgi protein at nanometer resolution by imaging Golgi ministacks. (Image: Hieng Chiong Tie and Lei Lu, School of Biological Sciences, Nanyang Technological University, Singapore)