Contents

RETROSPECTIVE

The secretory pathway at 50: a golden anniversary for some momentous grains of silver
Karl S. Matlin and Michael J. Caplan
229–232

PERSPECTIVE

Trafficking to the primary cilium membrane
Saikat Mukhopadhyay, Hemant B. Badgandi, Sun-hee Hwang, Bandanigoda Somatilaka,
Iseii S. Shimada, and Kasturi Pal
233–239

BRIEF REPORTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells</td>
<td>Michelle A. Baird, Neil Billington, Aibing Wang, Robert S. Adelstein, James R. Sellers, Robert S. Fischer, and Clare M. Waterman</td>
<td>240–251</td>
</tr>
<tr>
<td>Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity</td>
<td>Travis R. Ruch, David M. Bryant, Keith E. Mostov, and Joanne N. Engel</td>
<td>252–260</td>
</tr>
<tr>
<td>The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function</td>
<td>Valeria Padovano, Ivana Y. Kuo, Lindsey K. Stavola, Hans R. Aerni, Benjamin J. Flaherty, Hannah C. Chapin, Ming Ma, Stefan Somlo, Alessandra Boletta, Barbara E. Ehrlich, Jesse Rinehart, and Michael J. Caplan</td>
<td>261–269</td>
</tr>
</tbody>
</table>

ARTICLES

Biosynthesis and Biodegradation

Lipid disequilibrium disrupts ER proteostasis by impairing ERAD-substrate glycan trimming and dislocation
Milton To, Clark W. H. Peterson, Melissa A. Roberts, Jessica L. Counihan, Tiffany T. Wu,
Mercedes S. Forster, Daniel K. Nomura, and James A. Olzmann
270–284

Lipid disequilibrium induced by inhibition of long-chain acyl-CoA synthetases impairs ERAD substrate glycan trimming and dislocation independently of its effects on lipid droplet biogenesis. The disruptions in ER proteostasis activate the IRE1 and PERK branches of the unfolded protein response and ultimately induce IRE1-dependent cell death.
Cell Physiology

A Highlights from MBoC Selection
Ras and Rab interactor 1 controls neuronal plasticity by coordinating dendritic filopodial motility and AMPA receptor turnover
In hippocampal neurons, Ras and Rab interactor 1 (RIN1) hinders the formation of stable synaptic connections by increasing dendritic filopodial motility and regulates long-term depression by enhancing AMPA receptor endocytosis.

Cytoskeleton

A Highlights from MBoC Selection
Periodic actin structures in neuronal axons are required to maintain microtubules
Yue Qu, Ines Hahn, Stephen E.D. Webb, Simon P. Pearce, and Andreas Prokop
Drosophila genetics is combined with high-resolution microscopy and a number of functional readouts to demonstrate key factors required for the presence of regularly spaced cortical actin in axons. The data suggest important roles for the actin rings in microtubule regulation, most likely by sustaining their polymerization.

Membrane Trafficking

A Highlights from MBoC Selection
How and why intralumenal membrane fragments form during vacuolar lysosome fusion
Sevan Mattie, Erin K. McNally, Mahmoud A. Karim, Hojatollah Vali, and Christopher L. Brett
When vacuolar lysosomes fuse, an intralumenal membrane fragment is produced and degraded by hydrolyses. How or why this fragment forms is not entirely understood. We show that the fusion machinery regulates stalk expansion during lipid bilayer fusion to create or eliminate fragments, affecting lysosome morphology and transporter protein turnover.

Multivalent Rab interactions determine tether-mediated membrane fusion
Anna Lünc, Jieqiong Gao, Anne Kuhlee, Erdal Yavavli, Lars Langemeyer, Angela Perz, Stefan Raunser, and Christian Ungermann
The HOPS tethering complex binds both the Rab7-like Ypt7 and SNAREs. Several HOPS mutants are used to show that both Rab-binding sites, but not the ALPS motif in Vps41, are necessary to tether and fuse membranes.

Methods

Extracting microtubule networks from superresolution single-molecule localization microscopy data
Zhen Zhang, Yukako Nishimura, and Pakorn Kanchanawong
Microtubule filaments form ubiquitous networks. However, quantitative analysis of this structure is difficult due to its complex architecture. A tool is given for the automated retrieval of microtubule filaments from superresolution microscopy images and used for a quantitative analysis of microtubule network architecture phenotypes in fibroblasts.

Signaling

A Highlights from MBoC Selection
NLK-mediated phosphorylation of HDAC1 negatively regulates Wnt signaling
Katarzyna Chmielarska Masoumi, Renée Daams, Wondossen Sime, Valentina Siino, Hengning Ke, Fredrik Levander, and Ramin Massoumi
Primary embryonic fibroblast cells isolated from NLK-deficient mice proliferate faster and have a shorter cell cycle than wild-type cells. Nemo-like kinase and HDAC1 together negatively regulate Wnt signaling via Tcf/Lei transcription repression and prevent aberrant proliferation of fibroblast cells.

CORRECTION

An mDia1-INF2 formin activation cascade facilitated by IQGAP1 regulates stable microtubules in migrating cells
Francesca Bartolini, Laura Andres-Delgado, Xiaoyi Qu, Sara Nik, Nagendran Ramalingam, Leonor Kremer, Miguel A. Alonso, and Gregg G. Gundersen