The Dutch microscopist Antony van Leeuwenhoek (1632–1723) was the first to see living protozoa, sperm, and bacteria. The cover this month is a drawing of bacteria from his mouth, published in 1695 in a collection of observations entitled *Arcana Naturae Detecta* (Secrets of Nature Revealed).

Leeuwenhoek remains an elusive figure for modern biologists, although a great deal is known about his life and work. To begin with, his name is a source of puzzlement, with its unfamiliar excess of vowels. A reasonably close approximation to the Dutch pronunciation, using English spelling, is LAY-WEN-HOOK. He is sometimes credited with inventing the compound microscope, even though he himself never used one, and the invention took place 30 years before he was born. Leeuwenhoek made all his observations with minute single lenses—magnifying glasses—held close to his eye. For ease of handling, these lenses were mounted between two metal plates, which also accommodated an adjustable pin on which specimens were placed. Living protozoa and bacteria were observed in water inside a short length of capillary tubing. Leeuwenhoek made several hundred of these simple microscopes with lenses of different sizes, the smallest of which had a focal length of about 1 mm and magnified 200 times. Leeuwenhoek was not an ignorant dilettante, as he is sometimes portrayed. It is true that he spoke only Dutch, that he was a draper by trade, and that he seldom traveled far from home. But he was a prominent citizen in Delft, who corresponded with scientists in several countries, particularly with members of the Royal Society of London. He became quite famous in his long lifetime. He was elected a full Fellow of the Royal Society in 1680, and he was visited by several heads of state, including Peter the Great of Russia, who, incidentally, could converse with him in Dutch. Many textbooks make the obscure statement that Leeuwenhoek studied *animalcules*. This archaic English word is nothing more than a back-translation from *animalcula* (see the cover), which is the Latin rendering of Leeuwenhoek's word *Dierkens*, meaning little animals. In modern English, Leeuwenhoek studied *microorganisms*, among which various species of protozoa, algae, nematodes, rotifers, *Hydra*, and bacteria are readily identifiable from his accurate descriptions. His observations were contained in some 165 letters, mostly addressed to the Royal Society, and published originally as English or Latin abstracts in the Philosophical Transactions. Many of his letters and several of his microscopes are still in existence. Anyone who wants to learn more about Leeuwenhoek should begin with Clifford Dobell's engaging biography *Antony van Leeuwenhoek and his Little Animals*.
Instructions to Authors

Molecular Biology of the Cell (formerly Cell Regulation), the journal owned and published by the American Society for Cell Biology, will publish papers that describe and interpret results of original research concerning the molecular aspects of cell structure and function. Studies whose scope bridges several areas of biology are particularly encouraged, for example cell biology and genetics. The aim of the Journal is to publish papers describing substantial research progress in full; papers should include all previously unpublished data and methods essential to support the conclusions drawn. The Journal will not, in general, publish papers that are merely confirmatory, preliminary reports of partially completed or incompletely documented research, findings of as yet uncertain significance, or reports simply documenting well known processes in organisms or cell types not previously studied. Methodological studies will be considered only when some new result of biological significance has been achieved with the method.

Organization of Manuscripts

Manuscripts should be written in concise, logical, and grammatically correct English. The manuscript should be organized into Abstract, Introduction, Methods, Results, Discussion, Acknowledgments, References, Tables, and Figure Legends. Every effort should be made to be brief, short of skipping essential data or methods. The Title Page should include the authors’ full names and affiliations, a running title of less than 40 characters, and the phone and FAX numbers of the corresponding author. Each of the sections of a paper serves a different purpose. Therefore, there is no reason to repeat in one section material described in another.

The Abstract should be short, no more than 200 words. The Introduction should summarize very briefly the background of the research to be reported, and should elaborate any theoretical background to the design of the experiments; it should not summarize the data. The Materials and Methods is an important part of a full paper. This section should contain the experimental protocols and describe the origin of any unusual or special materials, tissue, cell lines or organisms; genotypes should here be given in full. It is appropriate in this section to provide data to support the identity or purity of reagents (e.g., specificity of an antibody preparation), the reliability of methods (e.g., linearity of an assay), the sensitivity of an instrument, or the essential features of a genotype. Authors should seek to put most of the experimental detail into the Materials and Methods section, leaving the Results section for exposition of the experimental design and results.

The Results section should present, in a logical order, the experiments that support the conclusions to be drawn later in the Discussion. Particular care should be taken in the Results section to state results exactly; this is not the place for interpretations, extended lines of inference, arguments or speculations. The Discussion section, in contrast, is intended to allow the authors to propose their interpretation of their results, and to suggest what they might mean in a larger context. The view of the Editorial Board is that the Results section should conform to a high standard of rigor, but that an imaginative Discussion is the prerogative of the authors. The Results and Discussion sections may be subdivided further if subheadings give the manuscript more clarity.

Preparation of Figures

Authors must prepare all figures to the following specifications. MBC will notify authors of substandard figures at the time of the initial disposition of the manuscript, so that all figures can be brought up to standard by the authors before final acceptance of a paper.

Figures should be cited in numerical order in the text. Type legends double-spaced and consecutively on a separate sheet. Each legend should include a general figure title followed by explanation of specific parts. Arabic numerals should be used for figures and upper case letters for multiple parts of a single figure (e.g., Figures 1A and 2B).

Line drawings. Figures may be prepared by a professional artist or by computer. Computer graphs must be printed on a laserwriter or a professional quality plotter, not a dot-matrix printer. Line drawings may be submitted on 8.5 x 11 pages but will be reduced during production to single column width (8.2 cm) or less if the graph is relatively simple. Authors should plan the size of the numbers, letters and symbols to meet the following standards after reduction to a width of 8.2 cm: numbers and upper case letters should be 1.5 to 1.75 mm high; lower case letters should be 1 to 1.5 mm high; symbols should be 1 mm high and about 3 times the line width. Only standard symbols (\(\bigcirc\), \(\bullet\), \(\triangle\), \(\uparrow\), \(\downarrow\)) will be accepted. Authors should confirm that their line drawings meet these specifications by inspecting all drawings after reduction to single column width.

Gels. Photographs of gels will be reduced to a lane width of 4 to 5 mm so that figures with 1 to 5 lanes will print a half column wide, 6 to 15 lanes one column wide, and more than 15 lanes 1.5 to 2 columns wide. The letters and numbers labeling these photographs should be planned so that they are 1.5 to 2 mm high.
after reduction to the Journal’s specifications. All labeling should be compact enough to avoid large blank spaces around the gel lanes. Separate groups of lanes should be mounted with blank spaces equal or less than 3 mm in-between.

Halftone photographs. All halftone photographs should be submitted at the reproduction size. All figures, whether they consist of one or multiple halftones, should be planned to fill the width of one (8.2 cm) or two (17.5 cm) columns without large blank spaces. Multiple halftones should be mounted with spaces equal to or less than 3 mm separating the prints. Halftone figures slightly larger than a single column will automatically be reduced to a single column width. All micrographs should be carefully cropped to emphasize the main point of the image. Blank background areas and any material that is irrelevant or repetitive should be removed. All micrographs or groups of micrographs must have scale boards. In general, labels should be placed on the halftones rather than to the side to allow production of the halftone at maximum size.

Tables
Type tables double-spaced on sheets separate from the text and make them self-contained and self-explanatory. Do not use vertical rules. Label each table at the top with a Roman numeral followed by the table title. Insert explanatory material and footnotes below the table. Supply units of measure at the heads of the columns.

Conventions
This Journal follows the abbreviations of the Council of Biology Editors Style Manual. For chemical nomenclature, follow the Subject Index of Chemical Abstracts. Capitalize trade names and give manufacturers’ names and addresses.

Abbreviations. A term that does not appear in the abbreviations list of the Council of Biology Editors Style Manual must be used five times or more in a paper to qualify as an abbreviation. Spell out the term on first mention and follow it with the abbreviated form in parentheses. Thereafter use the abbreviated form. Supply a footnote of nonstandard abbreviations used in the paper, in alphabetical order, and give each abbreviation followed by its spelled-out version. In general, the number of abbreviations should be kept to a minimum.

Key words. List up to five key words on the title page. Do not duplicate words in the article title. A key “word” can be a phrase that is no longer than three words.

References
References should be cited in the text by name and date and not by number (Beckerle et al., 1987 or Nagafuchi and Takeichi, 1989). Only articles published or in press should be listed in the Reference section. References should contain complete titles and inclusive page numbers. Abbreviate the names of journals as in the Serial Sources for the Biosis Data Base. Unpublished results, including personal communications and submitted manuscripts, should be cited as such in the text. Personal communications must be accompanied by permission letters unless they are from the authors’ laboratory.

Submission of Papers
One original and three copies of each paper should be submitted. Papers should be typed double-spaced on bond paper, and should be in a final form requiring minimal editing. Manuscripts that have been printed on a dot matrix printer that does not produce letter quality text will be returned without review. Authors interested in submitting accepted manuscripts on diskette should contact the Managing Editor for format specifications. High quality glossy prints of each figure should accompany the original manuscript and each copy. Color figures should be submitted as both glossy prints and slides. Submission of a manuscript to MBC implies that it has not been submitted for publication elsewhere and that it contains unpublished, new information. Copies of closely related papers that are in press or have been submitted elsewhere should also be submitted in order to facilitate the review process. Personal communications may be quoted only with the agreement of the person cited. A letter of permission, stating that the person involved has seen the text of the quotation and gives permission for its use, must be obtained by the author, and a copy sent to the Editorial Office prior to publication of the manuscript. It is required that copies of the manuscript as submitted have been communicated to all authors at that time. Authors should submit papers to:

Ms. Rosalba A. Kampman, Managing Editor
Molecular Biology of the Cell (MBC)
American Society for Cell Biology
9650 Rockville Pike
Bethesda, Maryland 20814-3992
Phone: (301) 530-7153
FAX: (301) 571-8304

Questions regarding submitted manuscripts should be directed to the Managing Editor.

Reviewing Procedure
Papers submitted to MBC should be fully documented, original research papers. All data and methods essential to the conclusions should be provided. The reviewers will be specifically requested to certify that the central conclusions of each paper do not depend on unpublished work, data not shown, or preliminary
summaries of data intended for publication elsewhere. Interested readers should be able to reproduce the experiments relying solely on the paper describing them and published work cited by the paper. Citations to any published precedents for the results or conclusions will be expected, and reviewers will be instructed to reject papers with grossly insufficient or inappropriate citation of previous work. If the Editors consider a manuscript appropriate for the scope and content of the Journal, it will be sent to reviewers, one of whom will be an Editorial Board member. An editorial decision based on the review will be provided to the author within a few weeks of submission.

MBC will consider revised versions of manuscripts judged by reviewers to be of substantial merit but that lack some essential experiments or data, or which require extensive alteration for other reasons. A point-by-point reconciliation with the reviewers’ comments will be required. Revised manuscripts will be examined by Associate Editors and, occasionally, re-reviewed.

All manuscripts are reviewed with the understanding that authors reporting research involving recombinant DNA, humans, and animals have carried out all of the experiments in accordance with the recommendations from the Declaration of Helsinki and the appropriate NIH guidelines, and that the research protocols have been approved where necessary by the appropriate institutional committees.

Publication

Publication schedule. Every effort will be made to publish manuscripts within five months after receipt. Authors can help to reduce the publication time of a manuscript by returning corrected page proofs to the ASCB Publications Office not more than 48 hours after receipt.

Proofs. Page proofs are sent to the author, along with instructions on handling text and figure proofs. Corrections should be restricted to printer’s errors. Information on authors’ charges for offprints and special services will also be provided at this time.

Reprints. A reprint order form included with the page proofs must be returned before the Journal goes to press. As indicated on the forms, an institutional purchase order must be sent to the printer before reprints will be released.

Page and plate charges. There is a basic page charge of $25 per page. The author’s inability to meet charges will not affect the publication of acceptable manuscripts. The surcharge for halftone illustrations is $14 per halftone. There is a $1000 charge to authors for printing of a four-color figure.

Methods

Methods should reference all standard procedures, but should be complete enough so that the results can be verified by other laboratories.

Crystallographic Data

Authors of manuscripts reporting crystallographic studies of proteins and other biopolymers must submit the relevant structural data to the Protein Data Bank (Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973) [see Commission on Biological Macromolecules (1989) Acta Crystallogr. Sect. A45, 65], this submission will be specified in a footnote to the paper.

Distribution of Material

Publication of a paper in *MBC* implies that the authors agree to make available all propagative materials such as mutant organisms, cell lines, recombinant plasmids, vectors, viruses, and monoclonal antibodies that were used to obtain results presented in the article. Prior to obtaining these materials, interested scientists will provide the authors with a written statement that they will be used for noncommercial research purposes only.

Financial Support

All sources of financial support for the work reported must be acknowledged.

Submission of Sequences

Manuscripts published in *MBC* that have nucleotide sequences must have an EMBL database accession number. An accepted manuscript that does not have such a number by page proof stage will be held until the number is provided.
Cover

The Dutch microscopist Antony van Leeuwenhoek (1632–1723) was the first to see living protozoa, sperm, and bacteria. The cover this month is a drawing of bacteria from his mouth, published in 1695 in a collection of observations entitled Arcana Naturae Detecta (Secrets of Nature Revealed). Leeuwenhoek remains an elusive figure for modern biologists, although a great deal is known about his life and work. To begin with, his name is a source of puzzlement, with its unfamiliar excess of vowels: A reasonably close approximation to the Dutch pronunciation, using English spelling, is LAY-\-WEN-HOOK. He is sometimes credited with inventing the compound microscope, even though he himself never used one, and the invention took place 30 years before he was born. Leeuwenhoek made all his observations with minute single lenses—magnifying glasses—held close to his eye. For ease of handling, these lenses were mounted between two metal plates, which also accommodated an adjustable pin on which specimens were placed. Living protozoa and bacteria were observed in water inside a short length of capillary tubing. Leeuwenhoek made several hundred of these simple microscopes with lenses of different sizes, the smallest of which had a focal length of about 1 mm and magnified 200 times. Leeuwenhoek was not an ignorant dilettante, as he is sometimes portrayed. It is true that he spoke only Dutch, that he was a draper by trade, and that he seldom traveled far from home. But he was a prominent citizen in Delft, who corresponded with scientists in several countries, particularly with members of the Royal Society of London. He became quite famous in his long lifetime. He was elected a full Fellow of the Royal Society in 1680, and he was visited by several heads of state, including Peter the Great of Russia, who, incidentally, could converse with him in Dutch. Many textbooks make the obscure statement that Leeuwenhoek studied animalcules. This archaic English word is nothing more than a back-translation from animalcula (see the cover), which is the Latin rendering of Leeuwenhoek’s word Dierkens, meaning little animals. In modern English, Leeuwenhoek studied microorganisms, among which various species of protozoa, algae, nematodes, rotifers, Hydra, and bacteria are readily identifiable from his accurate descriptions. His observations were contained in some 165 letters, mostly addressed to the Royal Society, and published originally as English or Latin abstracts in the Philosophical Transactions. Many of his letters and several of his microscopes are still in existence. Anyone who wants to learn more about Leeuwenhoek should begin with Clifford Dobell’s engaging biography Antony van Leeuwenhoek and his Little Animals.