Cover

The compound microscope—that is, a microscope with an objective lens and an eyepiece—was invented in Holland about 400 years ago. Because this type of microscope has played such a central role in biology during the past 100 years, particularly in cell biology, one assumes it has been the mainstay of biologists from the earliest days. It is true that the first important microscopist, Robert Hooke, used a compound instrument for the observations he published in 1665, including the famous piece of cork (see covers for January 1992 and January 1993). However, most of the plates in Hooke's *Micrographia* depict objects at low magnification, less than about 50x. It was not the high magnification (by our standards) that won Hooke such instant acclaim, but the novelty of his observations, the depth of his interpretations, and above all the artistry of his finely engraved plates. When microscopists after Hooke experimented with ways to obtain higher magnifications, they soon learned (by experience, not theory) that a single small lens held close to the eye could magnify up to 200–300x and, more importantly, gave a clearer image than the same lens used as the objective in a compound microscope. Leeuwenhoek appreciated this fact at the end of the 17th century, as did most microscopists throughout the 18th century. Thus the single lens or simple microscope became the instrument of choice, the one with which most biological discoveries were made until well into the 19th century. As late as 1830 Robert Brown was still using a simple microscope when he discovered the cell nucleus and the incessant jiggling of microscopic particles we now know as "Brownian motion." Much confusion arises from equating simple in simple microscope with crude or imperfect; the distinction is between *simple*, having a single lens (which can be of very high quality), and *compound*, having two or more lenses. The cover shows two views of a typical 18th century simple microscope of the sort known as Wilson's screw-barrel microscope, in reference to its mode of construction and to the English manufacturer who popularized it. The lenses are shown separately in the upper half of the plate, numbered from 5 to 00 in decreasing size, and hence increasing magnification. Each lens had its own mount (b in the top figure, q in the lower) which, because of the short focal length, had to be placed very close to the specimen. Several specimens were mounted on a slider; once the desired specimen was in place, focusing was accomplished with a large screw that worked against a metal spring to move the specimen relative to the fixed lens. This illustration is from a book published in 1761–2 by M. F. Ledermüller entitled, * Mikroskopische Gemüths- und Augen-Ergützung* (Microscopical Delight for the Mind and Eye), which contained 150 hand-colored plates showing all manner of plant, animal, and inorganic objects seen through a simple microscope. Ledermüller also wrote a well-known treatise on sperm under the title *Physicalische Beobachtungen derer Saamenthiereins* (Physical Observations on Sperm Organisms). Further information on simple microscopes and their importance in early biological investigations can be found in Brian J. Ford's *Single Lens, the Story of the Simple Microscope* (Harper and Row, 1985).
Instructions to Authors

Molecular Biology of the Cell, the journal owned and published by the American Society for Cell Biology, will publish papers that describe and interpret results of original research concerning the molecular aspects of cell structure and function. Studies whose scope bridges several areas of biology are particularly encouraged, for example cell biology and genetics. The aim of the Journal is to publish papers describing substantial research progress in full: papers should include all previously unpublished data and methods essential to support the conclusions drawn. The Journal will not, in general, publish papers that are merely confirmatory, preliminary reports of partially completed or incompletely documented research, findings of as yet uncertain significance, or reports simply documenting well known processes in organisms or cell types not previously studied. Methodological studies will be considered only when some new result of biological significance has been achieved with the method.

Organization of Manuscripts

Manuscripts should be written in concise, logical, and grammatically correct English. The manuscript should be organized into Abstract, Introduction, Methods, Results, Discussion, Acknowledgments, References, Tables, and Figure Legends. Every effort should be made to be brief, short of skipping essential data or methods. The Title Page should include the authors’ full names and affiliations, a running title of less than 40 characters, and the phone and FAX numbers of the corresponding author. Each of the sections of a paper serves a different purpose. Therefore there is no reason to repeat in one section material described in another.

The Abstract should be short, no more than 200 words. The Introduction should summarize very briefly the background of the research to be reported, and should elaborate any theoretical background to the design of the experiments; it should not summarize the data. The Materials and Methods is an important part of a full paper. This section should contain the experimental protocols and describe the origin of any unusual or special materials, tissue, cell lines or organisms; genotypes should here be given in full. It is appropriate in this section to provide data to support the identity or purity of reagents (e.g. specificity of an antibody preparation), the reliability of methods (e.g. linearity of an assay), the sensitivity of an instrument, or the essential features of a genotype. Authors should seek to put most of the experimental detail into the Materials and Methods section, leaving the Results section for exposition of the experimental design and results.

The Results section should present, in a logical order, the experiments that support the conclusions to be drawn later in the Discussion. Particular care should be taken in the Results section to state results exactly; this is not the place for interpretations, extended lines of inference, arguments or speculations. The Discussion section, in contrast, is intended to allow the authors to propose their interpretation of their results, and to suggest what they might mean in a larger context. The view of the Editorial Board is that the Results section should conform to a high standard of rigor, but that an imaginative Discussion is the prerogative of the authors. The Results and Discussion sections may be subdivided further if subheadings give the manuscript more clarity.

Preparation of Figures

Authors must prepare all figures to the following specifications. *MBC* will notify authors of substandard figures at the time of the initial disposition of the manuscript, so that all figures can be brought up to standard by the authors before final acceptance of a paper.

Figures should be cited in numerical order in the text. Type legends double-spaced and consecutively on a separate sheet. Each legend should include a general figure title followed by explanation of specific parts. Arabic numerals should be used for figures and upper case letters for multiple parts of a single figure (e.g., Figures 1A and 2B).

Line drawings. Figures may be prepared by a professional artist or by computer. Computer graphs must be printed on a laserwriter or a professional quality plotter, not a dot-matrix printer. Line drawings may be submitted on 8.5 × 11 pages but will be reduced during production to single column width (8.2 cm) or less if the graph is relatively simple. Authors should plan the size of the numbers, letters and symbols to meet the following standards after reduction to a width of 8.2 cm: numbers and upper case letters should be 1.5 to 1.75 mm high; lower case letters should be 1 to 1.5 mm high; symbols should be 1 mm high and about 3 times the line width. Only standard symbols (⊙, ●, △, ▲, □, ■) will be accepted. Authors should confirm that their line drawings meet these specifications by inspecting all drawings after reduction to single column width.

Gels. Photographs of gels will be reduced to a lane width of 4 to 5 mm so that figures with 1 to 5 lanes will print a half column wide, 6 to 15 lanes one column wide, and more than 15 lanes 1.5 to 2 columns wide. The letters and numbers labeling these photographs should be planned so that they are 1.5 to 2 mm high.
after reduction to the Journal's specifications. All labeling should be compact enough to avoid large blank spaces around the gel lanes. Separate groups of lanes should be mounted with blank spaces equal or less than 3 mm in-between.

Halftone photographs. All halftone photographs should be submitted at the reproduction size. All figures, whether they consist of one or multiple halftones, should be planned to fill the width of one (8.2 cm) or two (17.5 cm) columns without large blank spaces. Multiple halftones should be mounted with spaces equal to or less than 3 mm separating the prints. Halftone figures slightly larger than a single column will automatically be reduced to a single column width. All micrographs should be carefully cropped to emphasize the main point of the image. Blank background areas and any material that is irrelevant or repetitive should be removed. All micrographs or groups of micrographs must have scale boards. In general, labels should be placed on the halftones rather than to the side to allow production of the halftone at maximum size.

Tables

Type tables double-spaced on sheets separate from the text and make them self-contained and self-explanatory. Do not use vertical rules. Label each table at the top with a Roman numeral followed by the table title. Insert explanatory material and footnotes below the table. Supply units of measure at the heads of the columns.

Conventions

This Journal follows the abbreviations of the Council of Biology Editors Style Manual. For chemical nomenclature, follow the Subject Index of Chemical Abstracts. Capitalize trade names and give manufacturers' names and addresses.

Abbreviations. A term that does not appear in the abbreviations list of the Council of Biology Editors Style Manual must be used five times or more in a paper to qualify as an abbreviation. Spell out the term on first mention and follow it with the abbreviated form in parentheses. Thereafter use the abbreviated form. Supply a footnote of nonstandard abbreviations used in the paper, in alphabetical order, and give each abbreviation followed by its spelled-out version. In general, the number of abbreviations should be kept to a minimum.

Key words. List up to five key words on the title page. Do not duplicate words in the article title. A key “word” can be a phrase that is no longer than three words.

References

References should be cited in the text by name and date and not by number (Beckerle et al., 1987 or Nagafuchi and Takeichi, 1989). Only articles published or in press should be listed in the Reference section. References should contain complete titles and inclusive page numbers. Abbreviate the names of journals as in the Serial Sources for the Biosis Data Base. Unpublished results, including personal communications and submitted manuscripts, should be cited as such in the text. Personal communications must be accompanied by permission letters unless they are from the authors' laboratory.

Submission of Papers

One original and three copies of each paper should be submitted. Papers should be typed double-spaced on bond paper, and should be in a final form requiring minimal editing. Manuscripts that have been printed on a dot matrix printer that does not produce letter quality text will be returned without review. Authors interested in submitting accepted manuscripts on diskette should contact the Managing Editor for format specifications. High quality glossy prints of each figure should accompany the original manuscript and each copy. Color figures should be submitted as both glossy prints and slides. Submission of a manuscript to MBC implies that it has not been submitted for publication elsewhere and that it contains unpublished, new information. Copies of closely related papers that are in press or have been submitted elsewhere should also be submitted in order to facilitate the review process. Personal communications may be quoted only with the agreement of the person cited. A letter of permission, stating that the person involved has seen the text of the quotation and gives permission for its use, must be obtained by the author, and a copy sent to the Editorial Office prior to publication of the manuscript. It is required that copies of the manuscript as submitted have been communicated to all authors at that time. Authors should submit papers to:

Ms. Rosalba A. Kampman, Managing Editor
Molecular Biology of the Cell (MBC)
American Society for Cell Biology
9650 Rockville Pike
Bethesda, Maryland 20814-3992
Phone: (301) 530-7153
FAX: (301) 571-8304

Questions regarding submitted manuscripts should be directed to the Managing Editor.

Reviewing Procedure

Papers submitted to MBC should be fully documented, original research papers. All data and methods essential to the conclusions should be provided. The reviewers will be specifically requested to certify that the central conclusions of each paper do not depend on unpublished work, data not shown, or preliminary
summaries of data intended for publication elsewhere. Interested readers should be able to reproduce the experiments relying solely on the paper describing them and published work cited by the paper. Citations to any published precedents for the results or conclusions will be expected, and reviewers will be instructed to reject papers with grossly insufficient or inappropriate citation of previous work. If the Editors consider a manuscript appropriate for the scope and content of the Journal, it will be sent to reviewers, one of whom will be an Editorial Board member. An editorial decision based on the review will be provided to the author within a few weeks of submission.

MBC will consider revised versions of manuscripts judged by reviewers to be of substantial merit but that lack some essential experiments or data, or which require extensive alteration for other reasons. A point-by-point reconciliation with the reviewers’ comments will be required. Revised manuscripts will be examined by Associate Editors and, occasionally, re-reviewed. All manuscripts are reviewed with the understanding that authors reporting research involving recombinant DNA, humans, and animals have carried out all of the experiments in accordance with the recommendations from the Declaration of Helsinki and the appropriate NIH guidelines, and that the research protocols have been approved where necessary by the appropriate institutional committees.

Publication

Publication schedule. Every effort will be made to publish manuscripts within five months after receipt. Authors can help to reduce the publication time of a manuscript by returning corrected page proofs to the ASCB Publications Office not more than 48 hours after receipt.

Proofs. Page proofs are sent to the author, along with instructions on handling text and figure proofs. Corrections should be restricted to printer’s errors. Information on authors’ charges for offprints and special services will also be provided at this time.

Reprints. A reprint order form included with the page proofs must be returned before the Journal goes to press. As indicated on the forms, an institutional purchase order must be sent to the printer before reprints will be released.

Page and plate charges. There is a basic page charge of $25 per page. The author’s inability to meet charges will not affect the publication of acceptable manuscripts. The surcharge for halftone illustrations is $14 per halftone. There is a $1000 charge to authors for printing of a four-color figure.

Methods

Methods should reference all standard procedures, but should be complete enough so that the results can be verified by other laboratories.

Crystallographic Data

Authors of manuscripts reporting crystallographic studies of proteins and other biopolymers must submit the relevant structural data to the Protein Data Bank (Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973) [see Commission on Biological Macromolecules (1989) Acta Crystallogr. Sect. A45, 65], this submission will be specified in a footnote to the paper.

Distribution of Material

Publication of a paper in MBC implies that the authors agree to make available all propagative materials such as mutant organisms, cell lines, recombinant plasmids, vectors, viruses, and monoclonal antibodies that were used to obtain results presented in the article. Prior to obtaining these materials, interested scientists will provide the authors with a written statement that they will be used for noncommercial research purposes only.

Financial Support

All sources of financial support for the work reported must be acknowledged.

Submission of Sequences

Manuscripts published in MBC that have nucleotide sequences must have an EMBL database accession number. An accepted manuscript that does not have such a number by page proof stage will be held until the number is provided.
Does Your Library Subscribe to
Molecular Biology of the Cell?

If not, simply fill out the top half of the form below and submit it to your librarian.

Molecular Biology of the Cell (MBC) is the journal owned and published by The American Society for Cell Biology. *MBC* publishes rigorous, scholarly, and complete papers that describe and interpret results of original research concerning the molecular aspects of cell structure and function. The journal encourages studies whose scope bridges several areas of cell biology.

ATENTION: LIBRARIAN

I have reviewed *Molecular Biology of the Cell* and recommend that our library subscribe to it.

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

LIBRARY ORDER FORM

Please enter our subscription for *Molecular Biology of the Cell* at the rate of $300.00 for one year ($350.00 for libraries in foreign countries).

Method of payment: *(US currency only)*

- [] Purchase Order
- [] Check

<table>
<thead>
<tr>
<th>Library Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Mail with payment to: The American Society for Cell Biology, 9650 Rockville Pike, Bethesda, MD 20814-3992. phone (301) 530-7153; fax (301) 571-8304.
The American Society for Cell Biology
Thirty-third Annual Meeting
New Orleans, Louisiana
Saturday, December 11 - Wednesday, December 15, 1993

Symposia Topics & Speakers

Symposium I: The Cell Biology of AIDS
Chair: Anthony S. Fauci, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD
Speakers: Anthony S. Fauci, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD
Flossie Wong-Staal, University of California, San Diego, CA
Ronald Desrosiers, Harvard Medical School, New England Regional Primate Research Center, Southborough, MA

Symposium II: Eukaryotic DNA Replication
Chair: Susan A. Gerbi, Brown University, Providence, RI
Speakers: Susan A. Gerbi, Brown University, Providence, RI
Bonita Brewer, University of Washington, Seattle, WA
Bruce Stillman, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

Symposium III: Cellular Shape and Movement
Chair: James Spudich, Stanford University, Stanford, CA
Speakers: Elizabeth Luna, Worcester Foundation for Experimental Biology, Shrewsbury, MA
Lynn Cooley, Yale University School of Medicine, New Haven, CT
Bruce Patterson, Stanford University, Stanford, CA

Symposium IV: Probing Nuclear Organization: Structural, Genetic, and Cytological Approaches
Chair: Virginia Zakian, Fred Hutchinson Cancer Research Center, Seattle, WA
Speakers: Virginia Zakian, Fred Hutchinson Cancer Research Center, Seattle, WA
Jeanne Lawrence, University of Massachusetts, Worcester, MA
Thomas Stieitz, Yale University, New Haven, CT

Symposium V: Cell Biology of the Extracellular Matrix
Chair: Mina Bissell, Lawrence Berkeley Laboratory, Berkeley, CA
Speakers: Mina Bissell, Lawrence Berkeley Laboratory, Berkeley, CA
Lynn Sakai, Shriners Hospital, Portland, OR
Keith Roberts, John Innes Institute, Norwich, UK

Symposium VI: Cell Determination in Development
Chair: Douglas Melton, Harvard University, Cambridge, MA
Speakers: Douglas Melton, Harvard University, Cambridge, MA
Tom Jessell, Howard Hughes Medical Institute, Columbia University College of Physicians & Surgeons, New York, NY
Sarah Hake, Plant Gene Expression Center, University of California, Berkeley, Albany, CA

Symposium VII: Structure and Function in Transmembrane Complexes
Chair: Kenneth Miller, Brown University, Providence, RI
Speakers: Lily Y. Jan, University of California, San Francisco, CA
David Stokes, University of Virginia Health Sciences Center, Charlottesville, VA
Ron Milligan, The Scripps Research Institute, La Jolla, CA

Symposium VIII: Mitosis: Structures and Regulation
Chair: William Earnshaw, Johns Hopkins University Medical School, Baltimore, MD
Speakers: William Earnshaw, Johns Hopkins University School of Medicine, Baltimore, MD
John Carbon, University of California, Santa Barbara, CA
Andrew Murray, University of California, San Francisco, CA

Symposium IX: Intracellular Targeting
Chair: Ruth Lehmann, The Whitehead Institute for Biomedical Research, MIT, Cambridge, MA
Speakers: Ruth Lehmann, The Whitehead Institute for Biomedical Research, MIT, Cambridge, MA
Kenneth Keegstra, Michigan State University, East Lansing, MI
Larry Gerace, The Scripps Research Institute, La Jolla, CA

Important Dates

Preregistration
October 8

Hot Papers Submission
November 1

Placement Preregistration
November 1

For additional information contact: The American Society for Cell Biology, 9650 Rockville Pike, Bethesda, MD 20814-3992; Tel: 301-530-7153; Fax: 301-530-7139.
Molecular Biology of the Cell

Volume 4 Issue 9 September 1993

Articles

The β4 Subunit Cytoplasmic Domain Mediates the Interaction of αβ4 Integrin with the Cytoskeleton of Hemidesmosomes
L. Spinardi, Y.-L. Ren, R. Sanders, and F.G. Giancotti .. 871–884

Delays in Anaphase Initiation Occur in Individual Nuclei of the Syncytial Drosophila Embryo

Proliferating Cell Nuclear Antigen and p21 Are Components of Multiple Cell Cycle Kinase Complexes
H. Zhang, Y. Xiong, and D. Beach ... 897–906

The α and β Subunits of Nematode Actin Capping Protein Function in Yeast
J.A. Waddle, J.A. Cooper, and R.H. Waterston ... 907–917

Suppression of a sec63 Mutation Identifies a Novel Component of the Yeast Endoplasmic Reticulum Translocation Apparatus
T. Kurita and P. Silver .. 919–930

Structural and Functional Characterization of Sec66p, a New Subunit of the Polypeptide Translocation Apparatus in the Yeast Endoplasmic Reticulum
D. Feldheim, K. Yoshimura, A. Admon, and R. Schekman .. 931–939

The Caenorhabditis elegans Homologue of the Extracellular Calcium Binding Protein SPARC/Osteonectin Affects Nematode Body Morphology and Mobility
J.E. Schwarzbaumer and C.S. Spencer ... 941–952

The Extracellular Matrix as a Cell Survival Factor
J.E. Meredith, Jr., B. Fazeli, and M.A. Schwartz ... 953–961

Heterokaryon Myotubes with Normal Mouse and Duchenne Nuclei Exhibit Sarcolemmal Dystrophin Staining and Efficient Intracellular Free Calcium Control
W.F. Denetclaw, Jr., G. Bi, D.V. Pham, and R.A. Steinhardt ... 963–972

Cover

The compound microscope—that is, a microscope with an objective lens and an eyepiece—was invented in Holland about 400 years ago. Because this type of microscope has played such a central role in biology during the past 100 years, particularly in cell biology, one assumes it has been the mainstay of biologists from the earliest days. It is true that the first important microscope, Robert Hooke, used a compound instrument for the observations he published in 1665, including the famous piece of cork (see covers for January 1992 and January 1993). However, most of the plates in Hooke's Micrographia depict objects at low magnification, less than about 50X. It was not the high magnification (by our standards) that won Hooke such instant acclaim, but the novelty of his observations, the depth of his interpretations, and above all the artistry of his finely engraved plates. When microscopists after Hooke experimented with ways to obtain higher magnifications, they soon learned (by experience, not theory) that a single small lens held close to the eye could magnify up to 200–300X and, more importantly, gave a clearer image than the same lens used as the objective in a compound microscope. Leeuwenhoek appreciated this fact at the end of the 18th century, as did most microscopists throughout the 18th century. Thus the single lens or simple microscope became the instrument of choice, the one with which most biological discoveries were made until well into the 19th century. As late as 1830 Robert Brown was still using a simple microscope when he discovered the cell nucleus and the incessant jiggling of microscopic particles we now know as "Brownian motion." Much confusion arises from equating simple in simple microscope with crude or imperfect; the distinction is between simple, having a single lens (which can be of very high quality), and compound, having two or more lenses. The cover shows two views of a typical 18th century simple microscope of the sort known as Wilson’s screw-barrel microscope, in reference to its mode of construction and to the English manufacturer who popularized it. The lenses are shown separately in the upper half of the plate, numbered from 5 to 0 in decreasing size, and hence increasing magnification. Each lens had its own mount (b in the top figure, q in the lower) which, because of the short focal length, had to be placed very close to the specimen. Several specimens were mounted on a slider; once the desired specimen was in place, focusing was accomplished with a large screw that worked against a metal spring to move the specimen relative to the fixed lens. This illustration is from a book published in 1761–2 by M. F. Ledermüller entitled, Mikroskopische Gemäths- und Augen-Ergützung (Microscopical Delight for the Mind and Eye), which contained 150 hand-colored plates showing all manner of plant, animal, and inorganic objects seen through a simple microscope. Ledermüller also wrote a well-known treatise on sperm under the title Physikalische Beobachtungen derer Saamenthiergens (Physical Observations on Sperm Organisms). Further information on simple microscopes and their importance in early biological investigations can be found in Brian J. Ford’s Single Lens, the Story of the Simple Microscope (Harper and Row, 1985).