Introducing the Natural Solutions for

Cell Separation

The new standard in cell separation by density gradient centrifugation is Cellsep, the first media product line derived from a natural polysaccharide. Cellsep provides:

- High density, low osmolality media
- Fast, clean cell separation
- Extremely low viscosity
- Low potential for cell activation
- Sterile, ready-to-use solution for each cell type

For prompt delivery of the newest, most cost-effective cell separation solutions call **800-386-5300**

Lymphocytes

Platelets

Marrow Cells

Hepatocytes

Erythrocytes

Sperm

Endothelial Cells

Cellsep

See us at ASCB Conference

LAREX, Inc. Creating Solutions From Renewable Resources

6th International Congress on Cell Biology and the 36th American Society for Cell Biology Annual Meeting

San Francisco, California, USA, December 7–11, 1996

Call for Abstracts will be mailed in December 1995.
Contact the Congress Secretariat for meeting information.

Secretariat: 9650 Rockville Pike ■ Bethesda, MD 20814-3992 USA ■ Tel: 301-530-7153 ■ Fax: 301-530-7139 ■ E-mail: ascbinfo@ascb.faseb.org
AMPLIFY your research throughput.

Introducing the Tac-8

- New innovative design
- 8 thermocyclers in one
- Control 8 different experiments at once
- Multiple user interface with a Macintosh network
- 1/4 the cost, 6 times less space
- Patented block design*

Automated BioSystems, Inc.
73 Story Street, Essex, MA 01929
Call for free brochure and demonstration software package (for Macintosh only).
Tel 508-768-7664 Fax 508-768-7239

Macintosh is a trademark of Apple Computers, Inc.
* Patent number: U.S. P. N. S. 229,580 PCT No. US90/05498

FUTURE ANNUAL MEETINGS
OF
THE AMERICAN SOCIETY FOR CELL BIOLOGY

1996
Sixth International Congress on Cell Biology/
ASCB Annual Meeting
San Francisco, California
December 7-11

1997
Washington, DC
December 13-17

1998
San Francisco, CA
December 12-16

For additional information contact the ASCB National Office, 9650 Rockville Pike, Bethesda, MD 20814-3992; Tel: 301-530-7153, Fax: 301-530-7139, E-mail: ascbinfo@ascb.faseb.org

CRI

Liquid Crystal Tunable Filters

The VariSpec liquid crystal tunable filter enables researchers to perform rapid high resolution multispectral imaging. LCTFs have been used in biomedical applications such as tissue spectroscopy, pathology, vision studies and many other scientific imaging applications. LCTFs operate from 400 - 1050nm, with bandwidths from 5nm - 50nm and apertures as large as 35mm.

Cambridge Research & Instrumentation, Inc.
21 Erie St., Cambridge, MA 02139
(617) 491-2627 FAX (617) 864-3730
E-mail: CRI@WORLDW.ORG
The photographs on the cover show the chromosomes and spindle at the first meiotic division in a spermatocyte of the grasshopper *Chorthippus (Stenobothrus) lineatus*. They were published in 1929 by Karl Bélař in a paper entitled *Beiträge zur Kausalanalyse der Mitose* (Contributions to the causal analysis of mitosis). The four photographs follow a single spermatocyte for about 80 minutes after the testis was removed from the living animal and squashed gently under a coverslip in body fluid. One can see the oscillations of the bivalents along the major axis of the spindle and the spectacular pole-to-pole migration of the unpaired X-chromosome (arrow in Figures 41 and 42). The spindle itself is most clearly shown in Figure 40, where the vertical lines indicate the poles and define the major axis. These photographs were taken some 20 years before the introduction of phase contrast, and even longer before modern digital enhancement techniques. All contrast was obtained by careful manipulation of the apertures on the lamp and substage condensers, methods familiar to an earlier generation of light microscopists, who had no other way to bring out details in living cells. In other experiments Bélař subjected cells to hypertonic salt solutions and saw the spindles elongate into bizarre structures several times their original length. He thought these experimental spindles mimicked the normal process by which the chromosome groups were pushed apart at anaphase. What Bélař did not know (nor did I, until Bruce Nicklas told me) is that hypertonic treatment induces massive polymerization of new microtubules that have little to do with normal mitosis. Bélař died at the age of 36 shortly after carrying out these pioneering experimental studies on living cells at the Kaiser Wilhelm-Institut für Biologie in Berlin. In his brief career he also published an extraordinary monograph on shape changes (i.e., mitosis and other events) in nuclei of protozoa: *Der Formwechsel der Protistenkerne* (Gustav Fischer, 1926).
Author Index to Volume 6

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aebi, U.</td>
<td>1591</td>
</tr>
<tr>
<td>Ahn, N.G.</td>
<td>1479</td>
</tr>
<tr>
<td>Alberts, B.M.</td>
<td>1673</td>
</tr>
<tr>
<td>Allis, C.D.</td>
<td>1077</td>
</tr>
<tr>
<td>Alkon, R.</td>
<td>661</td>
</tr>
<tr>
<td>Altamura, N.</td>
<td>611</td>
</tr>
<tr>
<td>Amberg, D.C.</td>
<td>401</td>
</tr>
<tr>
<td>Amiev, M.R.</td>
<td>247</td>
</tr>
<tr>
<td>Anderson, R.A.</td>
<td>525</td>
</tr>
<tr>
<td>Andrade, R.A.</td>
<td>345</td>
</tr>
<tr>
<td>Aral, K.</td>
<td>497, 627</td>
</tr>
<tr>
<td>Armbrust, E.V.</td>
<td>1807</td>
</tr>
<tr>
<td>Asai, D.J.</td>
<td>1549</td>
</tr>
<tr>
<td>Assoian, R.K.</td>
<td>273, 1781</td>
</tr>
<tr>
<td>Atencio, D.P.</td>
<td>1125</td>
</tr>
<tr>
<td>Atkin, A.L.</td>
<td>611</td>
</tr>
<tr>
<td>Auer, K.L.</td>
<td>1905</td>
</tr>
<tr>
<td>Baciu, P.C.</td>
<td>1503</td>
</tr>
<tr>
<td>Bai, C.</td>
<td>387</td>
</tr>
<tr>
<td>Baird, A.</td>
<td>1861</td>
</tr>
<tr>
<td>Baldacci, G.</td>
<td>1697</td>
</tr>
<tr>
<td>Barbas, J.A.</td>
<td>1433</td>
</tr>
<tr>
<td>Barker, S.A.</td>
<td>1145</td>
</tr>
<tr>
<td>Barnes, G.</td>
<td>1241</td>
</tr>
<tr>
<td>Barton, N.R.</td>
<td>1563</td>
</tr>
<tr>
<td>Baumann, K.</td>
<td>1887</td>
</tr>
<tr>
<td>Bayna, E.M.</td>
<td>841</td>
</tr>
<tr>
<td>Beach, D.</td>
<td>1411</td>
</tr>
<tr>
<td>Becker, J.C.</td>
<td>841</td>
</tr>
<tr>
<td>Becker, M.</td>
<td>171</td>
</tr>
<tr>
<td>Beek, S.J.</td>
<td>777</td>
</tr>
<tr>
<td>Behlke, J.</td>
<td>911</td>
</tr>
<tr>
<td>Beiner, J.</td>
<td>1125</td>
</tr>
<tr>
<td>Bell, S.</td>
<td>741</td>
</tr>
<tr>
<td>Bernfield, M.</td>
<td>559</td>
</tr>
<tr>
<td>Beron, J.</td>
<td>261</td>
</tr>
<tr>
<td>Biernat, J.</td>
<td>1887</td>
</tr>
<tr>
<td>Blevitt, J.M.</td>
<td>1591</td>
</tr>
<tr>
<td>Bloom, G.S.</td>
<td>21</td>
</tr>
<tr>
<td>Bojanowski, K.</td>
<td>1349</td>
</tr>
<tr>
<td>Bolender, R.P.</td>
<td>327</td>
</tr>
<tr>
<td>Boronenkov, I.V.</td>
<td>525</td>
</tr>
<tr>
<td>Bossy, B.</td>
<td>433</td>
</tr>
<tr>
<td>Bourne, H.R.</td>
<td>1025, 1685</td>
</tr>
<tr>
<td>Bourtret, R.B.</td>
<td>1367</td>
</tr>
<tr>
<td>Bouvier, D.</td>
<td>1697</td>
</tr>
<tr>
<td>Bovia, F.</td>
<td>471</td>
</tr>
<tr>
<td>Brady, S.T.</td>
<td>21</td>
</tr>
<tr>
<td>Brach, K.</td>
<td>345</td>
</tr>
<tr>
<td>Brax, D.</td>
<td>1367</td>
</tr>
<tr>
<td>Breeden, L.L.</td>
<td>1641</td>
</tr>
<tr>
<td>Brent, R.</td>
<td>759</td>
</tr>
<tr>
<td>Bretscher, A.</td>
<td>1011, 1061</td>
</tr>
<tr>
<td>Briesewitz, R.</td>
<td>997, 1781</td>
</tr>
<tr>
<td>Brown, W.J.</td>
<td>871</td>
</tr>
<tr>
<td>Bruzzone, R.</td>
<td>459</td>
</tr>
<tr>
<td>Brunnett, N.W.</td>
<td>509</td>
</tr>
<tr>
<td>Burdine, V.</td>
<td>311</td>
</tr>
<tr>
<td>Caldwell, K.K.</td>
<td>1145</td>
</tr>
<tr>
<td>Campbell, A.M.</td>
<td>87</td>
</tr>
<tr>
<td>Campbell, S.D.</td>
<td>1333</td>
</tr>
<tr>
<td>Canal, I.</td>
<td>1433</td>
</tr>
<tr>
<td>Carlson, M.</td>
<td>1479</td>
</tr>
<tr>
<td>Carr, A.M.</td>
<td>371</td>
</tr>
<tr>
<td>Cassimeris, L.</td>
<td>1659</td>
</tr>
<tr>
<td>Catt, K.</td>
<td>1037</td>
</tr>
<tr>
<td>Cereghino, G.P.</td>
<td>1125</td>
</tr>
<tr>
<td>Cereghino, J.L.</td>
<td>1089</td>
</tr>
<tr>
<td>Cesnjaj, M.</td>
<td>1037</td>
</tr>
<tr>
<td>Chan, E.K.L.</td>
<td>345</td>
</tr>
<tr>
<td>Chanson, M.</td>
<td>1707</td>
</tr>
<tr>
<td>Chaponnier, C.</td>
<td>541</td>
</tr>
<tr>
<td>Chen, Q.</td>
<td>1743</td>
</tr>
<tr>
<td>Cheng, L.</td>
<td>1443</td>
</tr>
<tr>
<td>Cheresh, D.A.</td>
<td>841</td>
</tr>
<tr>
<td>Chien, K.R.</td>
<td>1479</td>
</tr>
<tr>
<td>Clarke, M.</td>
<td>311</td>
</tr>
<tr>
<td>Coffin, J.D.</td>
<td>1861</td>
</tr>
<tr>
<td>Cole, C.N.</td>
<td>401</td>
</tr>
<tr>
<td>Connell-Crowley, L.</td>
<td>387</td>
</tr>
<tr>
<td>Cook, J.G.</td>
<td>889</td>
</tr>
<tr>
<td>Copeland, C.S.</td>
<td>401</td>
</tr>
<tr>
<td>Culbertson, M.R.</td>
<td>611</td>
</tr>
<tr>
<td>Cutler, D.F.</td>
<td>597</td>
</tr>
<tr>
<td>Dadd, C.A.</td>
<td>1077</td>
</tr>
<tr>
<td>Dahan, A.</td>
<td>185</td>
</tr>
<tr>
<td>Dalton, S.L.</td>
<td>1781</td>
</tr>
<tr>
<td>Davey, S.</td>
<td>1411</td>
</tr>
<tr>
<td>de Figueiredo, P.</td>
<td>871</td>
</tr>
<tr>
<td>De Jonge, H.R.</td>
<td>1707</td>
</tr>
<tr>
<td>DeBiassio, R.L.</td>
<td>1755</td>
</tr>
<tr>
<td>Derby, R.J.</td>
<td>1515</td>
</tr>
<tr>
<td>Den Haese, G.J.</td>
<td>371</td>
</tr>
<tr>
<td>DeWald, D.B.</td>
<td>525</td>
</tr>
<tr>
<td>Dhamodharan, R.</td>
<td>1215</td>
</tr>
<tr>
<td>DiKe, L.E.</td>
<td>1349</td>
</tr>
<tr>
<td>Dimster-Denk, D.</td>
<td>59</td>
</tr>
<tr>
<td>Dingwall, A.K.</td>
<td>777</td>
</tr>
<tr>
<td>DiNubile, M.J.</td>
<td>1659</td>
</tr>
<tr>
<td>Dobrowolski, S.</td>
<td>387</td>
</tr>
<tr>
<td>Dockendorff, T.C.</td>
<td>401</td>
</tr>
<tr>
<td>Doetschman, T.</td>
<td>1861</td>
</tr>
<tr>
<td>Donoghue, D.J.</td>
<td>1111</td>
</tr>
<tr>
<td>Döring, F.</td>
<td>1397</td>
</tr>
<tr>
<td>Dorn, G.W.</td>
<td>II, 1861</td>
</tr>
<tr>
<td>Dotti, C.G.</td>
<td>1315</td>
</tr>
<tr>
<td>Drubin, D.G.</td>
<td>1423</td>
</tr>
<tr>
<td>Dunphy, W.G.</td>
<td>119</td>
</tr>
<tr>
<td>Dynlacht, B.</td>
<td>387</td>
</tr>
<tr>
<td>Edgar, B.A.</td>
<td>1333</td>
</tr>
<tr>
<td>Elledge, S.J.</td>
<td>387</td>
</tr>
<tr>
<td>Elurrut, R.G.</td>
<td>21</td>
</tr>
<tr>
<td>Emerson, D.A.</td>
<td>725</td>
</tr>
<tr>
<td>Emr, S.D.</td>
<td>525, 1089</td>
</tr>
<tr>
<td>Erikson, R.L.</td>
<td>237</td>
</tr>
<tr>
<td>Fabbro, D.</td>
<td>449</td>
</tr>
<tr>
<td>Fares, H.</td>
<td>1843</td>
</tr>
<tr>
<td>Farquhar, M.G.</td>
<td>7</td>
</tr>
<tr>
<td>Faure, M.</td>
<td>1025, 1685</td>
</tr>
<tr>
<td>Ferro-Novick, S.</td>
<td>1769</td>
</tr>
<tr>
<td>Ferris, A.</td>
<td>1433</td>
</tr>
<tr>
<td>Filardo, E.J.</td>
<td>841</td>
</tr>
<tr>
<td>Florkiewicz, R.Z.</td>
<td>1861</td>
</tr>
<tr>
<td>Fornallaz, M.</td>
<td>471</td>
</tr>
<tr>
<td>Forney, J.D.</td>
<td>1549</td>
</tr>
<tr>
<td>Forte, J.G.</td>
<td>541</td>
</tr>
<tr>
<td>Fox, C.A.</td>
<td>741</td>
</tr>
<tr>
<td>Fox, M.P.</td>
<td>387</td>
</tr>
<tr>
<td>Freiden, P.J.</td>
<td>283</td>
</tr>
<tr>
<td>Fuller, S.D.</td>
<td>1315</td>
</tr>
<tr>
<td>Furhmayr, H.</td>
<td>247</td>
</tr>
<tr>
<td>Füttener, A.</td>
<td>161</td>
</tr>
<tr>
<td>G. Dunphy, W.</td>
<td>199</td>
</tr>
<tr>
<td>Gabbiani, G.</td>
<td>541</td>
</tr>
<tr>
<td>Gallo, D.</td>
<td>345</td>
</tr>
<tr>
<td>Gamp, P.D.</td>
<td>509</td>
</tr>
<tr>
<td>Ganoth, D.</td>
<td>185</td>
</tr>
<tr>
<td>Garland, A.M.</td>
<td>509</td>
</tr>
<tr>
<td>Gary, R.</td>
<td>1061</td>
</tr>
<tr>
<td>Gaut, J.R.</td>
<td>283</td>
</tr>
<tr>
<td>Gautier, M.-C.</td>
<td>649</td>
</tr>
<tr>
<td>Geli, M.I.</td>
<td>1721</td>
</tr>
<tr>
<td>Gerace, L.</td>
<td>1591</td>
</tr>
<tr>
<td>German, R.</td>
<td>1861</td>
</tr>
<tr>
<td>Goetinck, P.P.</td>
<td>1503, 1743</td>
</tr>
<tr>
<td>Goff, S.P.</td>
<td>777</td>
</tr>
<tr>
<td>Goishi, K.</td>
<td>967</td>
</tr>
<tr>
<td>Goldstein, L.S.B.</td>
<td>1563</td>
</tr>
<tr>
<td>Golemis, E.A.</td>
<td>759</td>
</tr>
<tr>
<td>Goliger, J.A.</td>
<td>1491</td>
</tr>
<tr>
<td>Gonzalez, A.M.</td>
<td>1861</td>
</tr>
<tr>
<td>Goodenough, D.A.</td>
<td>459</td>
</tr>
<tr>
<td>Goodenough, U.W.</td>
<td>87, 1807</td>
</tr>
<tr>
<td>Gould, K.L.</td>
<td>371</td>
</tr>
<tr>
<td>Grady, E.F.</td>
<td>509</td>
</tr>
<tr>
<td>Graham, T.R.</td>
<td>809</td>
</tr>
<tr>
<td>Greene, L.A.</td>
<td>449</td>
</tr>
<tr>
<td>Griffiths, C.</td>
<td>1315</td>
</tr>
<tr>
<td>Guan, J.-L.</td>
<td>953</td>
</tr>
<tr>
<td>Guan, T.</td>
<td>1591</td>
</tr>
<tr>
<td>Hall, A.</td>
<td>1145</td>
</tr>
<tr>
<td>Hamilton, S.</td>
<td>41</td>
</tr>
<tr>
<td>Haner, M.</td>
<td>1591</td>
</tr>
<tr>
<td>Hansen, D.</td>
<td>1159</td>
</tr>
<tr>
<td>Harata, M.</td>
<td>1263</td>
</tr>
<tr>
<td>Harper, J.W.</td>
<td>387</td>
</tr>
<tr>
<td>Hashimoto, C.</td>
<td>587</td>
</tr>
<tr>
<td>Haudecrosschild, D.R.</td>
<td>1743</td>
</tr>
<tr>
<td>Hayashi, N.</td>
<td>497</td>
</tr>
<tr>
<td>Hauser, H.</td>
<td>1263</td>
</tr>
<tr>
<td>Heath, C.V.</td>
<td>401</td>
</tr>
<tr>
<td>Helenius, A.</td>
<td>1173</td>
</tr>
<tr>
<td>Heller, H.</td>
<td>185</td>
</tr>
<tr>
<td>Hemler, M.E.</td>
<td>661</td>
</tr>
<tr>
<td>Hendershot, L.M.</td>
<td>283</td>
</tr>
<tr>
<td>Henske, A.</td>
<td>911</td>
</tr>
<tr>
<td>Heppner, K.J.</td>
<td>851</td>
</tr>
</tbody>
</table>

© 1995 by The American Society for Cell Biology
Peterson, J.R., 1173
Pfeiffer, J.R., 1145
Pilgrim, D., 1159
Pipeño, G., 697, 713
Plopper, G.E., 1349
Pon, L.A., 1381
Poon, R.Y.C., 1197
Post, P.L., 1755
Prado, A., 1433
Preuss, U., 1397
Pringle, J.R., 1843

Raff, J., 1673
Raff, M.C., 1443
Rayala, H.J., 87
Redmond, D., 327
Reichardt, L.F., 419, 433
Reilly, M., 327
Riezman, H., 1721
Rine, J., 59, 741
Rine, J.D., 1535
Rinzel, J., 945
Robbins, P.J., 1575
Roberts, D.M., 109
Rosenblatt, J., 227
Rossi, E.D., 1861
Sato, K., 1459
Saunders, S., 559
Schafer, W.R., 59
Schaller, M.D., 637
Scharf, E., 1781
Scheffler, I.E., 1125
Schliwa, M., 1605
Schmidt, C., 1875
Schmidt, W.K., 1271
Schneider, K., 1673
Schneiter, R., 357, 1103
Schwartz, M.A., 151
Scott, M.P., 777
Sengstag, C., 1535
Shaw, S.-Y., 1231
Sheetz, M.P., 171
Sidorova, J.M., 1641

Simon, V.R., 1381
Smith, M.G., 1381
Snider, M.D., 485
Snyder, M., 401
Spector, D.L., 1515
Sperling, L., 649
Spillmann, A., 261
Sprenger, F., 1333
Springer, T.A., 661
Stallcup, W.B., 1819
Stein, T.W., Jr., 345
Steinberg, G., 1605
Stepp, J.D., 41
Stevenson, B.J., 1721
Stillman, B., 741
Stojilković, S., 945
Stojilković, S.S., 1037
Stone, S., 1769
Strassel, C.P., 247
Strub, K., 471
Subramani, S., 675, 1793
Sudakin, V., 185
Sugimoto, A., 1185
Sunnerhagen, P., 1793
Swindell, E., 387

Takemura, R., 981
Takemura, R., 777
Tan, E.M., 345
Tang, W., 1231
Tani, T., 1515
Taniguchi, N., 967
Tartakoff, A.M., 357, 1103
Taylor, D.L., 1755
Teng, K.K., 449
Thorburn, A., 1479
Thorburn, J., 1479
Thorner, J., 889
Thrower, D., 1215
Tondravi, M.M., 1231
Toyoshima, H., 1197
Toyoshima, L., 171
Trinczek, B., 1887
Tsai, L.-H., 387

Uemata, T., 967
Umeyama, T., 981

Verderame, M.F., 953
Verrey, F., 261
Vogel, F., 911

Wadsworth, P., 1215
Wagstaff, P., 1575
Walton, P.A., 675
Walworth, N., 371
Wang, R.-H., 135
Wang, T., 1011
Wassarman, P.M., 577
Watanabe, S., 627
Weber, V., 1263
Wei, J.-Y., 283
Wei, N., 387
Weinstein, I.B., 449
Wessling-Resnick, M., 71
White, M.K., 1575
White, T.W., 459
Wilkerson, C.G., 685
Wilson, B.S., 1145
Wilson, C.L., 851
Wilson, L., 1215
Winans, K.A., 587
Wintersberger, U., 1263
Witman, G.B., 685
Witty, J.P., 1287
Woods Ignatowski, K.M., 953
Woodward, L., 7
Woychik, N.A., 759
Wright, J.H., 1287
Wright, R.L., 1535

Xiang, X., 297
Xin, M., 297

Yamamoto, A., 525
Yamamoto, K.R., 1833
Yamamoto, M., 1185
Yang, W.-P., 1231
Yao, X., 541
Yebra, M., 841
Yokota, T., 497
Yu, H., 171

Zhang, P., 387
Zhang, Y., 109
Zheng, L., 1037
Zhu, X., 273
Zigmond, S.H., 1659
Subject Index to Volume 6

A6 kidney cell epithelia
aldosterone modulation of sodium kinetics in, 261–271
ACT1 gene
in Saccharomyces cerevisiae, 1381–1396
Act3p
in Saccharomyces cerevisiae nucleus, 1263–1270
Actin
associated with inner dynein arms of Chlamydomonas axonemes, 697–711
delocalization of, end gene mutations causing, 1721–1742
dynamics of, ADF/cofilin proteins as stimulus-responsive modulators of (Essay), 1423–1431
mutation in Saccharomyces cerevisiae, 1381–1396
polarized distribution of isoforms of, in gastric parietal cells, 541–557
polymerization of. See Polymerization, of actin
protein Act3p in Saccharomyces cerevisiae nucleus, 1263–1270
unpolymerized ATP-bound, in Xenopus egg extracts, 227–236
Actin binding domain
of troponin I, 1433–1441
Actin-binding proteins
associated with neutrophil plasma membranes, 247–259
Actin filament
barbed-end capping activity in neutrophil lysates, 1659–1671
Activation
of histase H1 kinase, in Xenopus oocytes, 237–245
of integrin-dependent MAP kinase, 273–282
of protein kinase C, in rat basophilic leukemia cells, 97–108
of Xenopus Cdc25 phoshatase, 215–226
Adenosine triphosphate. See ATP entries
ADF/cofilin proteins
as stimulus-responsive modulators of actin dynamics (Essay), 1423–1431
Adhesion, cell. See Cell adhesion
Adrenocorticotrophic hormone
conversion of pro-opiomelanocortin to, in mouse pituitary Atf-20 cell line, 1271–1285
Agonist-stimulated pituitary cells
coupling dependence on phospholipase D in, 1037–1047
Aldosterone
and modulation of sodium kinetics in A6 kidney cell epithelia, 261–271
Alleles
mutant, of Schizosaccharomyces pombe rad1+ gene, separation of phenotypes in, 1791–1803
α1 subunit
in Na,K-ATPase, and aldosterone modulation of sodium kinetics in A6 kidney cell epithelia, 261–271
α1,3 mannosyltransferase
sorting, interaction, and mediation of, 809–824
αβ1 integrin
influence on fibronectin, 433–448
α cytoplasmic domain
and opposing β domain, in integrin receptors, 997–1010
Alu RNAs
SRP9/14 subunit of signal recognition particle in primate cells with, 471–484
Alveolar development
unscheduled, in transgenic mice, 1271–1285
Alzheimer tau protein
in Chinese hamster ovary cells, 1397–1410
Anchorage-independent growth
of mesenchyme-like cells from mammary epithelia, 559–576
Angiogenesis
of integrin and growth factor receptors in focal adhesion complex, 1349–1365
Antibodies, monoclonal
CT-1, human kinectin and, 1433–1441
Apophisin
overexpression of RACH2 in human tissue and, 1411–1421
Arachidonic acid
production of, and clustering β1 integrin activation of phospholipase A2, 1305–1313
Aspergillus nidulans
nadF gene in, 297–310
Assembly process
of CENP-C, domains required for, 1049–1059
of integrin receptors, 997–1010
of karmellae in yeast, 1535–1547
of microtubular bundles, in MAP2c-transfected COS cells, 981–996
ATPase activity
in vivo expression of Bp mammalian mutants and, 283–296
ATP binding site
ORC5 sequence and, 741–756
ATP-bound unpolymerized actin
in Xenopus egg extracts, 227–236
Atrial natriuretic factor
expression from, in cardiac muscle cells, 1479–1490
AAT-20 cells
pro-opiomelanocortin processing in mouse pituitary gland, 1271–1285
Attachment
integrin αβ1 promotion of, on fibronectin, 433–448
Autophosphorylation
of pp60src, and SHC-GRB2 complex formation in rat and chicken cells, 953–966
Avian GLUT1 glucose transporter
in chicken embryo fibroblasts, 1575–1589
Axonal transport
of kinesin heavy chain isoforms, in rat visual system, 21–40
Axonemes, Chlamydomonas. See Chlamydomonas axonemes

Bacterial chemotaxis
transmembrane receptor-linked multiprotein complex involved in, 1367–1380
Barbed-end capping activity
of actin filament in neutrophil lysates, 1659–1671
Basic fibroblast growth factor transgenic mice
abnormal bone growth and selective translational regulation in, 1861–1873
Basophilic leukemia cells
in rat, protein kinase C activation and phosphatidylinositol phosphate production in, 97–108
BEM2
rho-GAP encoding by, in budding yeast, 1011–1024
Benomil-dependent tubulin mutant suppression in budding yeast, 1241–1259
BET3 gene
identification of, 1769–1780
β2 capping protein
role in neutrophil lysates, 1659–1671
β cytoplasmic domain
and opposing α domain, in integrin receptors, 997–1010
β-tubulin mutation tub2-150
microtubule stability in Saccharomyces cerevisiae and, 1241–1259
bimC family
of microtubule motor proteins, Drosophila KLP61F and, 1563–1574
Binding constants
in bacterial chemotaxis, computer analysis of, 1367–1380
BiP ATPase mutants, mammalian
in vivo expression of, 283–296
Bone growth
abnormal, in basic fibroblast growth factor transgenic mice, 1861–1873
Bovine neutrophil plasma membranes
actin-binding proteins in, 247–259
Brefeldin A
mammalian secretory activity monitoring and, 135–150
membrane tubulation in Golgi apparatus and, 871–887
and pro-opiomelanocortin processing in mouse pituitary Atf-20 cell line, 1271–1285

© 1995 by The American Society for Cell Biology

1907
brm protein

Drosophila, related to SWI/SNF protein complex, 777–791

BS-C-1 cells

microinjected with rhodamine-labeled tubulin, 1215–1229

Budding yeast. See also Saccharomyces cerevisiae

actin mutation inhibition in, 1381–1396

benzylmalonyl-dependent tubulin mutant suppression in, 1241–1259

cac encoding of rho-GAP by _BEM2_ in, 1011–1024

C5-DMB-ceramide

for mammalian secretory activity monitoring, 135–136

Caco-2 cells

polarized, in common apical endosome compartment, 597–610

Caenorhabditis elegans

role of _fem-2_ gene in sex determination regulation, 1199–1171

Calcium and calcium ion

Inα3 induction of excitability of, in endoplasmic reticulum (Essay), 945–951

millimolar, in mouse pituitary AtT-20 cell line, 1271–1285

mobilizing receptors of, 1037–1047

role in _RBL-2H3_ mast cells, 825–839

Calmodulin

role in organelle membrane tubulation, 871–887

Calnexin

high sequence homology with calreticulin, 1173–1184

Calreticulin

transient, lectin-like association of, 1173–1184

Caltractin/centrin

associated with inner dynein arms of _Chlamydomonas_ axonemes, 697–711

Caenorhabditis elegans

role of _fem-2_ gene in sex determination regulation, 1199–1171

Calcium and calcium ion

Inα3 induction of excitability of, in endoplasmic reticulum (Essay), 945–951

millimolar, in mouse pituitary AtT-20 cell line, 1271–1285

mobilizing receptors of, 1037–1047

role in _RBL-2H3_ mast cells, 825–839

Calmodulin

role in organelle membrane tubulation, 871–887

Calnexin

high sequence homology with calreticulin, 1173–1184

Calreticulin

transient, lectin-like association of, 1173–1184

Caltractin/centrin

associated with inner dynein arms of _Chlamydomonas_ axonemes, 697–711

cAMP. See Cyclic adenosine monophosphate

Cancer cells. See Carcinoma cells

Capacitative Ca2+- entry

in _RBL-2H3_ mast cell responses, 825–839

Capping protein

role in neutrophil lysates, 1659–1671

Carboxypeptidase Y

mutant forms of vacular protein sorting receptor and, 1089–1102

Carboxy-terminal domain of focal adhesion kinase, 637–647

tripetide sequence of, 675–683

Carcinoma cells

HT29 colon, integrin α5β1 negative regulation of cell growth in, 725–740

pancreatic, migration on vitronectin, 841–850

programmed cell death in, 1443–1458

Cardiac muscle cells

signaling pathway in, 1479–1490

Cartilage matrix protein

analysis in primary cell cultures with retrovirus expression system, 1743–1753

Caveolin

distribution of GFP-anchored proteins and co-purification with, 929–944

VIP21, in vivo and in vitro oligomerization of, 911–927

CBF3

trans-acting mutations in, 793–807

Cdc2 protein kinase

and cyclin B complex, in _Xenopus_ egg extracts, 199–213

of fission yeast, 375–385

regulation of cyclin destruction at end of mitosis by, 185–198

in vitro phosphorylation in _Schizosaccharomyces pombe_, 1333–1347

Cdc25 phosphatase

phosphorylation and activation in _Xenopus_ egg extracts, 215–226

Cdk. See Cyclin-dependent kinase(s)

Cell adhesion

β1 integrin stimulation of signal transduction during, 1305–1313

integrin α4 cytoplasmic domain and, 661–674

integrin life cycle regulation and, 1781–1791

Cell aggregation

in _Dipterostomum_ amoebae for, 311–325

Cell cycle

CP60 localization to centrosome and, 1673–1684

growth regulation in, 725–740

progression of

and cyclin-dependent kinase p21, 387–400

origin recognition complex in, 741–756

rad-1 checkpoint mutant in _Saccharomyces cerevisiae_, 1411–1421

regulation of, and _Xenopus_ WEE1-like kinase, 119–134

Schizosaccharomyces pombe rad11 gene, 1791–1803

Swi6 phosphorylation regulated by, 1641–1658

of _Xenopus_ oocyte, 1111–1124

Cell death, programmed

in embryonic cells, fibroblasts, and cancer cells, 1443–1458

Cell lysates

barbed-end capping activity of actin filament in, 1659–1671

Cell migration

of carcinoma cells on vitronectin, 841–850

integrin α4 cytoplasmic domain and, 661–674

phosphorylated myosin II gradient and, 1735–1768

Cell morphology

fusiform, src-mediated transformation of chicken cells to, 953–966

in yeast

and Fab1p, 525–539

influenced by hsRBP7, 759–775

Cell motility. See Cell migration

Cell proliferation

shape-dependent, integrin-dependent

MAP kinase activation, as link to, 273–282

Cell spreading

integrin α4 cytoplasmic domain and, 661–674

integrin αβ1 promotion, on fibronectin, 433–448

Cellular glycoproteins

folding intermediates of, 1173–1184

CENTP-C

assembly process at kinetochore, 1049–1059

MIF2 gene mutations homologous to, 793–807

Centrin/caltractin

associated with inner dynein arms of _Chlamydomonas_ axonemes, 697–711

Centromeres

CENTP-C assembly at kinetochore, 1049–1059

MIF2 gene of _Saccharomyces cerevisiae_, 793–807

Centrosomes

CP60 localization to, 1673–1684

KLP61F mutations, 1563–1574

CEP1/CBF1/CPF1

trans-acting mutations in, 793–807

C-ERMAD. See Ezrin-radixin-moesin association domains

c-Fos protein

in cardiac muscle cells, 1479–1490

Checkpoint-dependent suppression of Cdc2/cyclin B complex in _Xenopus_ egg extracts, 199–213

Checkpoint mutant gene

rad1-1, in fission yeast cell cycle, 1411–1421

Chemotaxis, bacterial

multisubunit complex involved in, 1367–1380

Chemotherapeutic action of vinblastine, 1215–1229

Chicken

chorioallantoic membrane development in, 327–343

embryo fibroblasts of, GLUT1 and GLUT3 in, 1575–1589

estrogen-treated roosters, hepatocyte nuclear bodies in, 345–356

kinetin of, human cDNA homologous to, 161–170

sensory neuons of, β_{4} integrin mediation of, 419–431

SHC-GRB2 complex formation in, 953–966

Chinese hamster ovary cells

cell cycle-dependent phosphorylation and microtubule binding of tau protein in, 1397–1410

integrin α4 cytoplasmic domain in, 661–674

mammalian secretion mutation and fluorescent lipid analogue isolation in, 135–150

Chlamydomonas
Subject Index

meiosis-dependent mitochondrial rearrangement inhibited by actin mutation, 1381-1396
structure regulation by BEM2 encoded rho-GAP, 1011-1024
Cytosolic protein in cytoskeletal assembly and rearrangement, 1305-1313

Diphtheria toxin proHB-EGF as receptor for, 967-980
Discoidin-I in Dictyostelium amoebae, 311-325
DMAP190 and CP60 localization to centrosome, 1673-1684
DNA chloroplast, disruption of uniparental inheritance of, 1807-1818
origin recognition complex in replication of, 741-756
synthesis inhibitors in Xenopus egg extracts, 199-213
cDNA in cloning and characterization of human kinetin, 161-170
and cross-reaction of intermediate chains of sea urchin and Chlamydomonas outer arm dynein, 685-696
guinea pig cardiac, expression of gp1RK1 from, 1231-1240
kinetin clone, primary sequence and signal analysis of, 171-183
Domain dictation Rab, N-terminal properties, 71-85
Domain signal transmembrane, and mediation of α1,3 mannosyltransferase sorting, 809-824
Drosophila embryonal ventralization in, 587-596
heldup mutant of, 1433-1441
septins, localization and possible functions of, 1843-1859
snr1 and brm proteins in, 777-791
Weel kinase of, 1333-1347

Vol. 6, December 1995
Subject Index

Dynamic instability
of microtubules, 1887–1902
vinblastine suppression in living BS-
C-1 cells, 1215–1229

Dynein
inner arms in Chlamydomonas
axonemes
heavy chain subset, 697–711
intracellular splicing mutations, 713–723
outer arm in sea urchin and
Chlamydomonas, 685–696

E2F protein binding site
cis-acting regulatory elements of c-myc
gene and, 627–636
E2 glycoprotein
of rubella virus, transmembrane Golgi
retention signal in, 7–20

E2-C
cyclosome-associated, and cyclin
destruction at end of mitosis, 185–
198
Effenter ducts
matrix metalloproteinase matrilysin
expression in, 851–869
Eggs
of transgenic mice, sperm receptors
and normal reproduction, 577–585
of Xenopus, See Xenopus
Embryonic cells
programmed cell death in, 1443–1458
end5 gene
in endocytosis, 1721–1742
end6 gene
in endocytosis, 1721–1742
end7 gene
in endocytosis, 1721–1742
Endocytic pathway
of substance P, and neurokinin 1
receptor, 509–524
Endocytosis
in Caco-2 cells, 597–610
end gene mutations blocking
internalization step of, 1721–1742
Endoplasmic reticulum
acidification of, in mouse pituitary
AFT-20 cell line, 1271–1285
BET3 gene and, 1769–1780
disruption of, and in vivo expression of
mammalian Bip ATPase
mutants, 283–296
glycoprotein maturation and quality
control in, 1173–1184
InsP3-induced Ca2+ excitability of
(Essay), 945–951
intermediate compartment of, in
cultured rat hippocampal neurons,
1315–1332
retrieval of membrane proteins from
Golgi apparatus to, 1459–1477
VIP2α-caveolin oligomerization in,
911–927
of yeast, HMG-CoA reductase
sequences in, 1535–1547
Endosomes
in apical cytoplasm, and polarized
Caco-2 cells, 897–910
colocalization of neurokinin 1 receptor
with, 509–524
membrane tubulation of, 871–887
Endothelin-1 activation
in pituitary cell Ca2+ signal pathway,
1037–1047
Epidermal woundng
connexin expression alteration and gap
junction-mediated intercellular
communication in, 1491–1501
Epideridymis
matrix metalloproteinase matrilysin
expression in, 851–869
Epithelial cells
metalloproteinase matrilysin
expression in, 851–869
Erythropoiesis
and granulocyte-macrophage colony-
stimulation factor, 497–508
Estrogen
and formation of nuclear bodies in
hepatocytes of roosters, 345–356
Extracellular matrix
cell adhesion to, integrin life cycle
regulation and, 1781–1791
metalloproteinase remodeling of, in
transgenic mice, 1271–1285
Extracellular signal-regulated kinases
in cardiac muscle cells, 1479–1490
in Saccharomyces cerevisiae, 889–909
Extracellular signals
for programmed cell death avoidance,
1443–1458
Extracellular Toll protein
in Drosophila embryo, 587–596
Ezrin
actin-binding protein in neutrophil
plasma membranes, 247–259
actin isoform distribution in gastric
glandular cells and, 541–557
Ezrin-radixin-moesin association
domains
C- and N-terminals of, 1061–1075
Fab1p
in normal vacuole function and
morphology in yeast, 525–539
F-actin
binding in C-terminal domain, and
ezrin self-association, 1061–1075
response and FIP2 synergy in rat
basophilic leukemia cells, 97–108
FcrRI-activated Ca2+ responses
of RBL-2H3 mast cells, 825–839
FcrRI cross-linking
RBL-2H3 mast cells, 1145–1158
fem-2 gene
role in Caenorhabditis elegans, 1159–
1171
Fibroblast growth factor
basic, abnormal bone growth and
selective translational regulation
in transgenic mice, 1861–1873
Fibroblasts
of chicken embryos, GLUT1 and
GLUT3 differential regulation in,
1575–1589
programmed cell death in, 1443–1488
Fibronectin
β3 integrin mediation of chick sensory
nerve interactions with, 419–431
association of focal adhesion kinase
and paxillin in, 637–647
attachment to, reversal of integrin
β3α5 negative regulation of cell
growth by, 725–740
Filamentous network
collagen-independent, CMP forming,
1743–1753
Filaments, See Microtubule(s)
Fission yeast. See Schizosaccharomyces
pombe
Flagella
inner dynein arms of, light chain p28
and
heavy chain subset, 697–711
intrinspliciting mutations, 713–723
intermediate chains of outer arm
dynein of, 685–696
Floral development
in soybean nodulins 26 in transgenic
tobacco, 109–117
Fluorescent indicators
of mammalian secretion mutants, 135–
150
of myosin II regulatory light chain
phosphorylation, 1755–1768
Focal adhesion kinase
carboxyl terminal domain of, 637–647
complexes of
integrin α5 cytoplasmic domain and,
661–674
integrin and growth factor receptor
signaling pathways within, 1349–
1365
and pp60-src autophosphorylation,
953–966
Focal contacts
syndecan-4 recruitment into, 1503–1513
Force generation
by microtubule assembly/disassembly
in mitosis (Essay), 1619–1640
Fus3 kinase
for pheromone signal transduction in
Saccharomyces cerevisiae, 889–909
Fusiform morphology
src-mediated transformation of chicken
cells to, 953–966
Gap junction(s)
intercellular communication alteration
by epidermal wounding, 1491–
1501
phosphorylation regulating channels
in, 1707–1719
Gastric parietal cells
actin isoforms in, 541–557
Gelsolin
in neutrophil lysates, 1659–1671
Geranylgeranylation
of Rab5, and prenylation of C-terminal
cysteines, 71–85
Glucose-dependent turnover of mRNAs in Saccharomyces cerevisiae, 1125–1143
Glucose transporters in chicken embryo fibroblasts, 1575–1589
Glu mutations of Xenopus oocyte, 1111–1124
GLUT1 glucose transporters in chicken embryo fibroblasts, 1575–1589
Glycoproteins O-linked, in p62 complex, 1591–1603
rubella virus E2, transmembrane Golgi retention signal in, 7–20
Glycosylphosphoinositol-lipid
Insolubility and redistribution of, after detergent treatment, 929–944
GM-CSF human, cis-regulatory elements of c-myc promoter and, 627–636
Golgi apparatus acidification in mouse pituitary AdT-20 cell line, 1271–1285
calmodulin role in membrane tubulation of, 871–887
clathrin-dependent localization to secreted protein, 809–824
mannosidase II marker in, for defining location of, in cultured rat hippocampal neurons, 1315–1332
mannosyltransferase defect in protein glycosylation mutant of Schizosaccharomyces pombe, 485–496
retention signal of, targeting heterodimeric membrane protein complex to, 7–20
retrieval of membrane proteins from, 1459–1477
Gonadotropin-releasing hormone in pituitary cell Ca2+ signal pathway, 1037–1047
GPI-anchored proteins insolvency and redistribution, after detergent treatment, 929–944
gpIRK1 from guinea pig cardiac cDNA, 1231–1240
G proteins and differential effects of cAMP on MAP kinase cascade, 1025–1035
Gαs-mediated activation of MAP kinase cascade by, 1685–1695
in Golgi retention signal identification, 7–20
Granulocyte-macrophage colony-stimulation factor, human cis-regulatory elements of c-myc promoter and, 627–636
receptor expression of, in transgenic mice, 497–508
Growth arrest specific gene 1 integrin a5b1 induction of transcription of, 725–740
Growth factors deprivation of, in mouse fibroblast cells arrested, 1197–1213
membrane-anchored processing of, conversion from juxtaclere to paracrine growth activity in, 967–980
receptor for, within focal adhesion complex, 1349–1365
GTPase Ras-related, of C-terminal cystein prenylation, 71–85
Guinea pig expression of gpIRK1 cardiac cDNA from, 1231–1240
Hamster, Chinese, ovary cells of. See Chinese hamster ovary cells
HB-EGF rapid processing of, by phorbol ester, 967–968
Heat-shocked yeast cells nuclear accumulation of poly(A)+ RNA in, 1515–1534
Heat shock protein Hsp90 role in retinoid receptor signal transduction, 1833–1842
Heavy chains of Chlamydomonas axonemal inner dynein arm, 697–711
of kinesin, 777–791
of syndecan-4, rapid processing of, by phorbal ester, 967–980
HeLa cell adhesion and β1 integrin initiation of signaling pathway, 1305–1313
hldp1 mutant of Drosophila, and functional recovery of troponin I, 1433–1441
Hemagglutinin of influenza virus, 1173–1184
Hematopoietic cells c-myc protein in, 627–636
Hemopoietic progenitors proliferation and differentiation in transgenic mice, 497–508
Heparan sulfate proteoglycans syndecan-4, and cell adhesion within focal contacts, 1503–1513
Heparin-binding epidermal growth factor-like growth factor rapid processing of, by phorbol ester, 967–980
Hepatocytes of estrogen-treated roosters, formation of nuclear bodies in, 345–356
Hepatic insulin string motif leucine to phenylalanine change in, 1433–1441
Heterodimeric membrane protein complex targeting of, to Golgi retention signal, 7–20
Hexokinase and axonal transport of kinesin heavy chain isoforms in rat visual system, 21–40
Hippocampal neurons of rat, organization of endoplasmic reticulum and intermediate compartment in, 1315–1332
Histase H1 kinase Mek-1 mutant activation of, in Xenopus oocytes, 237–245
Histone H1 phosphorylation and dephosphorylation of, in Tetrahymena macronuclei, 1077–1087
HMG-CoA reductase identification of sequences in yeast, 1535–1547
Homoeotic activators in protein complex, 777–791
Hormones adrenocorticotropic, in mouse pituitary HBF-20 cell line, 1271–1285
gonadotropin-releasing, in pituitary cell Ca2+ signal pathway, 1037–1047
Host-range dependence and SHC-GRB2 complex association, for pp60c-s transformation, 953–966
HRP-1 cells in mammalian secretion mutants, 135–150
hsRBP7 yeast cell alteration by, 759–775
HT29 colon carcinoma cells cell growth regulation in, 725–740
Human granulocyte-macrophage colony-stimulation factor. See Granulocyte-macrophage colony-stimulation factor, human
Human kinectin molecular cloning and characterization of, 161–170
Human leukemia cell line survival requirements of, 1443–1458
Human LIS-1 gene for neuronal migration, and nudF gene in Aspergillus nidulans, 297–310
Human RNA polymerase II subunit hspRBP7 of, stress survival and cell morphology in yeast, 759–775
Hydrophilic protein BET3 encoding of, 1769–1780
Hyperphosphorylation of tau protein, and Alzheimer’s disease, 1397–1410
Hypertrophy phenylephrine-induced, of cardiac muscle cells, 1479–1490

IDA4 locus p28 protein encoding by in Chlamydomonas axonemes, 713–723
Inositol lipid synthesis and signal transduction in focal adhesion complex, 1349–1365
Insolubility of GPI-anchored proteins, after detergent treatment, 929–944
InsP3

Subject Index

Vol. 6, December 1995
Subject Index

Ca\(^{2+}\) excitability of endoplasmic reticulum induced by (Essay), 945–951

Instability, dynamic. See Dynamic instability

Integrin

activation of MAP kinase by, 273–282
focal adhesion kinase and paxillin co-localization with, 637–647
and growth factor receptor signaling pathways in focal adhesion complex, 1349–1365
life cycle regulation by cell adhesion to extracellular matrix, 1781–1791
receptors of, in opposing α and β cytoplasmic domains, 997–1010

Integrin α\(^6\)
cytosplasmic domain, specialized functional properties of, 661–674

Integrin α\(^5\)β1
expression of, and cell growth regulation, 725–740

Integrin α\(^5\)β1 promoting attachment, cell spreading, and neurite outgrowth on fibronectin, 433–448

Integrin αvβ5
promotion of pancreatic carcinoma cell adhesion to vitronectin by, 841–850

Integrin β1
cytosplasmic domain mutants of, 151–160
signal transduction stimulation during cell adhesion, 1305–1313

Integrin β\(^6\) and mediation of chick sensory neuron interactions, 419–431

Intercellular communication
and epidermal wound repair regulation, 1491–1501

Interleukin 3
cis-regulatory elements of c-myc promoter and, 627–636

Intermediate chains
in sea urchin and Chlamydomonas outer arm dynein, 685–696

Interspecies conservation
of outer arm dynein intermediate chain sequences, 685–696

Intron splicing mutations in Chlamydomonas axonemal inner dynein arms, 713–723

in vitro colony formation
human granulocyte-macrophage colony-stimulating factor effects on, 497–508

Ionic milieu
control of compartment-specific activation of pro-opiomelanocortin processing in mouse pituitary AtT-20 cell line, 1271–1285

Iron protein transcripts of succinate dehydrogenase in Saccharomyces cerevisiae, 1125–1143

iso1 gene of Chlamydomonas, and sex determination, 87–95

Isoforms of integrin, polarized distribution in gastric parietal cells, 541–557
kinase heavy chain, in rat visual system, 21–40
of troponin I, in Drosophila heldup mutant, 1433–1441

JSN1 gene
expression of during yeast anaphase, 1241–1259

Juxtracrine growth factor activity
HB-EGF conversion from, 967–980

K562 cells
integrin α\(^6\) cytoplasmic domain in, 661–674
Karmellae assembly in yeast, identification of sequences required for, 1535–1547

Kidney
A6 cell epithelia of, 261–271
Kinas. See Protein kinase(s); Tyrosine kinase(s)

Kinesin
human, molecular cloning and characterization of, 161–170
primary sequence and N-terminal topogenic signal analysis of, 171–183
Kinesin heavy chain isoforms axonal transport of, in rat visual system, 21–40

Kinesin-like proteins
Drosophila KLP61F, motor activity and mitotic spindle localization of, 1563–1574

Kinetochore
chromosome segregation mediated by, in Mlf2 mutations, 793–807
domains required for CENP-C assembly at, 1049–1059

Kip 1 redistribution of, in mouse fibroblast cell cycle, 1197–1213

KLP61F
motor activity and mitotic spindle localization of, 1563–1574

Kss1 protein kinase phosphorylation and localization of, in Saccharomyces cerevisiae pheromone response pathway, 889–909

Laminin-1
chick sensory neuron interactions with, 419–431

Lectin-like association of calreticulin, with folding intermediates of cellular and viral glycoproteins, 1173–1184

Leucine change to phenylyalanine, in heptameric leucine string motif, adjacent to actin binding domain of troponin I, 1433–1441

Leucine-rich repeats
extracellular, in Toll protein, and ventralization of Drosophila embryo, 587–596

Leukemia cells
basophilic, in rat, 97–108
human, survival requirements of, 1443–1458

Ligase activity
of ubiquitin in cycosome, 185–198

Light chain
myosin II in cardiac muscle cells, 1479–1490
regulatory phosphorylation and, 1755–1768

p28 associated with inner dynein arm heavy chain subset in Chlamydomonas axonemes, 697–711
Chlamydomonas axonemal inner dynein arms, 697–711, 713–723

Lipid analogue
fluorescent, in isolation of mammalian secretion mutants, 135–150

Lipoxigenase
β\(_1\) integrin signal transduction of, for cell adhesion, 1305–1313

LIS-1 gene
human, for neuronal migration in Aspergillus nidulans, 297–310

Literacy, cultural and scientific (Essay), 1–6

Localization. See also Nuclear localization signal
of Drosophila septins, 1843–1859
of p62 complex, 1591–1603
subcellular, cell cycle-regulated Swi6 phosphorylation and, 1641–1658

Lovastatin treatment of mouse fibroblast cells arrested, 1197–1213

Luminal domain interaction
α1.3 mannosyltransferase sorting and, 809–824

Mammalian BIP ATPase mutants
in vivo expression of, 283–296

Mammalian centromere protein CENP-C, Mlf2 mutations homologous to, 793–807

Mammalian cytosol and import of stably folded proteins into peroxisomes, 675–683

Mammalian secretion mutants fluorescent lipid analogue isolating, 135–150

Mammary epithelia transformation into anchorage-independent repeats mesenchyme-like cells, 559–576

Mammary morphogenesis matrix metalloproteinase expression during, in transgenic mice, 1271–1285

Mannosidase II

1912 Molecular Biology of the Cell
for Golgi complex marker, in cultured rat hippocampal neurons, 1315–1322
Mannosyltransferase αL3, sorting of, 809–824
MAP kinases. See Mitogen-activated protein kinase(s)
Mating
of algae, disruption of uniparental inheritance and cell-size control, 1807–1818
of yeast, and origin recognition complex, 741–756
Mating pheromone recognition pathway
Schizosaccharomyces pombe sid1 gene encoding of zinc-finger protein functions in, 1185–1195
Matsubara/MAP kinase(s)
expression of, during mammary morphogenesis in transgenic mice, 1271–1285
matripsin role in normal tissue remodeling, 851–869
Mavelonate pathway, Ras mRNA control in Saccharomyces cerevisiae by, 59–70
Meiosis
in Xenopus, cyclin B1 phosphorylation and, 1111–1124
MEK-1 protein kinase
differential effects of cAMP on, 1025–1035
phosphorylation site mutants, biochemical and biological analysis of, 237–245
Membrane
in bacterial chemotaxis, 1367–1380
vascular, soybean nodulin 26 in transgenic tobacco targeted to, 109–117
Membrane-anchored growth factor processing
by conversion from juxtracrine to paracrine growth activity, 967–980
Membrane protein(s)
heterodimeric complex of, Golgi retention signal targeting of, 7–20
retrieval from Golgi apparatus to endoplasmic reticulum, 1459–1477
trafficking of, through common apical endosome compartment of polarized Caco-2 cells, 597–610
VIP21-caveolin oligomerization, 911–927
Membrane tubulation
calmodulin role, 871–887
Merlin/schwannomin tumor suppressor ezrin self-association and, 1061–1075
Mesenchyme-like cells
transformation of epithelia into, 559–576
Messenger-activated protein kinases
in Saccharomyces cerevisiae, 889–909
Messenger RNA. See mRNA
Metalloproteinase matrilysin
preferential expression of, by epithelial cells in mice, 851–869
Microcystin
effect on Xenopus Cdc25 phosphatase, 215–226
Microtubule(s)
assembly/disassembly of, force generation in mitosis (Essay), 1619–1640
binding of, in Chinese hamster ovary cells, 1397–1410
bundles of, in COS cells, 981–996
dynamic instability of, 1887–1902
in living BS-C-1 cells, vinblastine suppression of, 1215–1229
Neurospora organelle motor, 1605–1618
proteins associated with, localization to centrosome, 1673–1684
stability of, in budding yeast, 1241–1259
MIF2 gene
of Saccharomyces cerevisiae, 793–807
Mif2 homology domain
of, expression in, 1241–1247
Mitochondrial inheritance
meiosis-dependent, in Saccharomyces cerevisiae, 1381–1396
Mitogen-activated protein kinase(s)
activation of integrin-dependent, as link to shape-dependent cell proliferation, 273–282
Mek-1 mutant, in Xenopus oocytes, 237–245
and assembly process of microtubular bundles, in nocodazole-treated COS cells, 981–996
cascade of activation, 1685–1695
differential effects of cAMP, 1025–1035
signaling pathway in cardiac muscle cells inhibited by, 1479–1490
Mitogenesis
and differential effects of cAMP on MAP kinase cascade, 1025–1035
Mitosis
cell cycle regulation of Xenopus Wee1-like kinase and, 119–134
cyclosome targeting of cyclins in, 185–198
force generation by microtubule assembly/disassembly in (Essay), 1619–1640
in Schizosaccharomyces pombe, 1333–1347
Mitotic spindle apparatus
localization of Drosophila kinesin-like protein KLP61F in, 1563–1574
microtubule dynamics in, vinblastine suppressing, 1215–1229
Moesin
actin-binding protein, associated with neutrophil plasma membranes, 247–259
ezrin self-association and, 1061–1075
Molecular cloning
of human kinectin, 161–170
Molecular motors
of Neurospora, 1605–1618
Monoclonal antibodies
CT-1, in human kinectin cloning, 161–170
Morphology. See Cell morphology
Motor activity
of Drosophila kinesin-like protein KLP61F, 1563–1574
Mouse
connexins in, functional analysis of, 459–470
interleukin-3 of, in prob cell line BA/F3 cells, 627–636
pituitary AtT-20 cell line of, 1271–1285
preferential expression of metalloproteinase matrilysin in epithelial cells of, 851–869
programmed embryo cell death in, 1443–1458
transgenic. See Transgenic mice
Mtr3p protein
in Saccharomyces cerevisiae, 1103–1110
Multigene family
in Paramecium, 649–659
Multiprotein complex
in bacterial chemotaxis, 1367–1380
Multivesicular bodies
Caco-2 apical cytoplasm population of, 597–610
Murine matrilysin
expression of, in tissue-restricted pattern of epithelial cells, 851–869
Mutation(s)
in Chlamydomonas axonemes
intron splicing, affecting locus encoding p28 of inner dynein arms, 713–723
isol gene of, and sex determination, 87–95
of mammalian secretion, and fluorescent lipid analogue isolation in Chinese hamster ovary cells, 135–150
mating type-linked, disrupting cell-size control in Chlamydomonas, 1807–1818
of Mek-1 phosphorylation sites, 237–245
in MIF2 genes
and CENP-C assembly at kinetochore, 1049–1059
and centromere protein mediation, 793–807
in Saccharomyces cerevisiae
of nuclear proteins, and accumulations of polyA+ RNA, 1103–1110
of RAT3/NUP133 gene, and nuclear pore complex clustering, 401–417
Myosin II
Subject Index

light chain expression, in cardiac muscle cells, 1479–1490
regulatory light chain phosphorylation, fluorescent protein biosensor of, 1755–1768
mZP3 mutated, normal reproduction in transgenic mice, 577–585

N-ERMAD. See Ezrin-radixin-moesin association domains

Nerve growth factor-induced neuritogenesis
selective translocation of protein kinase C-δ in PC12 cells during, 449–458
Neurite outgrowth integrin α8β1 promotion of, on fibronectin, 433–448
Neuritogenesis nerve growth factor-induced, 449–458
Neurokinin 1 receptor endocytic pathway of substance P and, 509–524
Neuronal migration human LIS-1 gene for, in Aspergillus nidulans, 297–310
Neurons sensory, of chicken, β4 integrin mediating interactions with, 419–431
Neurospora kinesin properties of, 1605–1618
Neuropathic signal transduction and protein kinase C-δ translocation in PC12 cells, 449–458
Neurophil actin filament barbed-end capping activity in, 1659–1671
plasma membranes of, moesin, ezrin, and p205 association with, 247–259
NF-E2B-dependent gene expression carcinoma cell migration on vitronectin induced by, 841–850
NG2 proteoglycan truncated form of, 1819–1832
Nkin properties of, 1605–1618
Nocodazole depolymerization of microtubular bundles in COS cells by, 981–996
Nodulin 26 of soybean, expressed in transgenic tobacco, 109–117
Nonsense-mediated mRNA decay in Saccharomyces cerevisiae, 611–625
N-terminal domain bound to C-terminal domain, and ezrin self-association, 1061–1075
N-terminal of fusion yeast DNA polymerase α, 1697–1705
of kinecin topogenic signal analysis, 171–183
transmembrane helix of, 161–170
Nuclear bodies formation of, in hepatocytes of estrogen-treated roosters, 345–356
Nuclear localization signals of human ribosomal protein S6, 1875–1885
N-terminus of fission yeast DNA polymerase α and, 1697–1705
Nuclear migration gene in Aspergillus nidulans, 297–310
Nuclear pore complex clustering of, in Saccharomyces cerevisiae, 401–417
p62 complex localization and, 1591–1603
Nucleolar accumulation of poly(A)+ RNA, in heat-shocked yeast cells, 1515–1534
Nucleolar proteins mutations of, and accumulations of polyA+ RNA, in Saccharomyces cerevisiae, 1103–1110
Nucleolus functions of, in mRNA transport in yeast (Essay), 357–370
Nucleoporin Rat3p/Nup133p, and mRNA export in Saccharomyces cerevisiae, 401–417
NudF gene in Aspergillus nidulans, 297–310
NUP133 gene in Saccharomyces cerevisiae, 401–417

Oligomerization of VIF21-caveolin, in vivo and in vitro, 911–927
Oligosaccharide specificity of calreticulin, in endoplasmic reticulum, 1173–1184
Oocytes of Xenopus. See Xenopus
ORC5 isolation of, and mutant properties, 741–756
Organelle motors Neurospora kinesin properties, 1605–1618
Organelles membrane tubulation of, calmodulin role in, 871–887
motility of, in Saccharomyces cerevisiae, 1381–1396
Origin recognition complex in silencing, cell cycle progression, and DNA replication, 741–756
Oscillations in intracellular Ca2+, induced by InsP3 (Essay), 945–951
P1(4)P 5-kinase homologue in normal vacuole function and morphology in yeast, 525–539
p28 protein in Chlamydomonas axonemal inner dynein arms heavy chain subset, 697–711

introm splicing mutations, 713–723
p62 complex structural analysis of, 1591–1603
p107/E2F complex cis-acting regulatory elements of c-myc gene and, 627–636
p120N-cadGAP
P-Tyr content of, in presence of v-src alleles, 953–966
p205 actin-binding protein associated with neutrophil plasma membranes, 247–259
Paneth cells matrix metalloproteinase matrilysin expression localized to, 851–869
Paracrine growth factor activity HB-EGF conversion to, 967–980
Paramaecium crystalline trichocyst matrix polypeptides in, 649–659
dynein heavy chain genes of, 1549–1562
Parietal cells gastric, polarized distribution of actin isoforms in, 541–557
Paxillin co-localization with focal adhesion kinase, 637–647
PC12 cells selective translocation of protein kinase C-δ in, 449–458
Pentapeptide of N-terminus of fission yeast DNA polymerase α, 1697–1705
Peroxisomes import of stably folded proteins into, 675–683
Pertussis toxin Gα2-mediated activation of MAP kinase cascade and, 1685–1695
pH of pro-opiomelanocortin, in mouse pituitary AtT-20 cell line, 1271–1285
Phenotypes separation in mutant alleles of Schizosaccharomyces pombe rad1+ gene, 1791–1803
Phenylephrine-induced hypertrophy of cardiac muscle cells, 1479–1490
Pheromone response pathway of Saccharomyces cerevisiae, 889–909
Phorbol ester rapid processing of HB-EGF induced by, 967–980
Phosphatidylinositol 4,5-bisphosphate vacuole function and morphology in yeast and, 525–539
Phosphatidylinositol kinase associated with pp60src autophosphorylation in chicken cells, 953–966
FceRI cross-linking activation of lipid and kinase activities of, 1145–1158
production of, in rat basophilic leukemia cells, 97–108
Phospholipase A2 clustering β4 integrin activation of, 1305–1313
Phospholipase D
stimulus-transcription coupling
development, in agonist-
stimulated pituitary cells, 1037–
1047
Phosphorylation
ADF/cofilin protein activities inhibited
by, 1423–1431
of Cdc2 in vitro in Schizosaccharomyces
pombe, by Drosophila Weel kinase,
1333–1347
as control mechanism in Caenorhabditis
elegans sex determination, 1159–
1171
of cyclin B1, for Xenopus oocyte
maturity, 1111–1124
differential, and dynamic instability of
microtubules, 1887–1902
gap junction channels regulated by,
1707–1719
of Kss1 protein kinase, in
Saccharomyces cerevisiae pheromone
response pathway, 889–909
Mek-1 mutants of, 237–245
and microtubule binding of tau
protein, transfected into Chinese
hamster ovary cells, 1397–1410
of myosin II regulatory light chain,
1753–1768
of pp60-src, and SHC-GRB2 complex
formation in rat and chicken cells,
953–966
of Swi6, cell cycle-regulated, 1641–1658
at T14, in fission yeast Cdc2, 371–385
of Tetrahymena macronuclear H1
isosomes, 1077–1087
of Xenopus Cdc25 phosphatase, 215–
226
PIP3 synthesis
in rat basophilic leukemia cells, 97–108
Pituitary cells
agonist-stimulated, and dependence on
phospholipase D, 1037–1047
AtT-20 mouse cell line, ionic milieu
control of pro-opiomelanocortin
processing in, 1271–1285
Polarity orientation
of microtubular bundles, in
nocodazole-treated, MAP2c-
transfected COS cells, 981–996
Polarized Caco-2 cells
membrane protein trafficking through
common apical endosome
compartment of, 597–610
Polymerization, of actin
and ADF/cofilin proteins as stimulus-
responsive modulators (Essay),
1423–1431
as correlation with protein kinase C
activation in rat basophilic
leukemia cells, 97–108
in Xenopus egg extracts, 227–236
Polypeptidases
of crystalline trichocyst matrix in
Paramecium, and multigene family
coding, 649–659
of Toll protein, ventralization of
Drosophila embryo and, 587–596
Polyribosomes
UF1 co-localization with, in
cytoplasm of yeast, 611–625
Poly(A)+ RNA
accumulations of
in heat-shocked yeast cells, 1515–
1534
and nucleolar protein mutations in
Saccharomyces cerevisiae, 1103–1110
RAT3/NUP133 gene in Saccharomyces
cerevisiae, 401–417
in yeast, nucleolus functions in
transport of (Essay), 357–370
Position effect
of mating type genes, and origin
recognition complex, 741–756
Potassium channel
in yeast, 1231–1240
pp60-src
and signal transduction in focal
adhesion complex, 1349–1365
pp60src
in binding to carboxyl terminal
domain of focal adhesion kinase,
637–647
pp60src autophosphorylation
and SHC-GRB2 complex formation, in
rat and chicken cells, 953–966
pp125Nck
and pp60src autophosphorylation,
953–966
Prenylation
of C-terminal cysteins, by Rab3, N-
terminal domain dictation, 71–85
Preservation response
in Dicyostelium discoideum, 311–325
Primates
SRP9/14 subunit of signal recognition
particle in, 471–484
Programmed cell death
in embryonic cells, fibroblasts, and
cancer cells, 1443–1458
proB-EGF processing
by conversion from juxtacline to
paracrine growth activity, 967–980
Prohormone convertase
in mouse pituitary AtT-20 cell line,
1271–1285
Proliferation
of hemopoietic progenitors, in
transgenic mice, 497–508
shape-dependent cell, activation of,
273–282
Pro-opiomelanocortin
in mouse pituitary AtT-20 cell line,
1271–1285
Protein(s)
actin-binding, associated with
neutrophil plasma membranes,
247–259
ADF/cofilins, as stimulus-responsive
modulators of actin dynamics
(Essay), 1423–1431
AP medium chain-related, and late
Golgi sorting function for
Saccharomyces cerevisiae, 41–58
folding of, calnexin and calreticulin
roles in, 1173–1184
of heterodisperse membrane, Golgi
retention signal targeting of, 7–20
homeotic activators of, 777–791
kinetin, topogenic signal analysis of,
171–183
Rab9 N-terminal domain, 71–85
RAS mRNA level control by
mavelonate pathway, in
Saccharomyces cerevisiae, 59–70
signaling, caveolae and GPl-anchored
proteins with, 929–944
stably folded, import into peroxisomes,
675–683
yeast clathrin AP medium chain-
related, and late Golgi sorting
function for Saccharomyces
cerevisiae Apm1p, 41–58
Protein glycosylation mutants
isolation of, in Schizosaccharomyces
pombe, 485–496
Protein kinase(s). See also Mitogen-
activated protein kinase(s)
activation of
integrin-dependent, 273–282
Mek-1 mutant, in Xenopus oocytes,
237–245
Cdc2, Weel regulation of, 371–385
cyclin-dependent, p21 inhibition of,
387–400
inhibitors and activators of, in gap
junction channel regulation, 1707–
1719
Xenopus Weel-like, cell cycle
regulation of, 119–134
Protein kinase A
in Dicyostelium amoebae, 311–325
Protein kinase C
activation of
and carcinoma cell migration on
vitronectin, 841–850
by β integrin initiation of signaling
pathway, 1305–1313
and phosphatidylinositol phosphate
production, in rat basophilic
leukemia cells, 97–108
in membrane-anchored growth factor
processing, 967–980
syndecan-4 recruitment into focal
contacts by, 1503–1513
Protein kinase C-β
selective translocation of, in PC12 cells,
449–458
Protein phosphatase, putative
fem-2 gene encoding of, in
Caenorhabditis elegans sex
determination, 1159–1171
Protein targeting
in cytoplasmic tail domain of vacuolar
protein sorting receptor, in
Saccharomyces cerevisiae, 1089–1102
Proteoglycan
NG2, generation of, 1819–1832
Proteolysis
cell surface, NG2 proteoglycan
generation by, 1819–1832
and cyclosome targeting of cyclins,
185–198
in vivo regulation of, and SPARC
expression during chicken
chorioallantoic membrane
development, 327–343
Subject Index

Putative protein phosphatase
fem-2 gene encoding of, in
Caenorhabditis elegans sex
determination, 1159–1171

Rab, protein
N-terminal domain properties of, 71–
85
RACH2 human gene
complementing radl-1 fission yeast cell
checkpoint mutant gene, 1411–
1421
radl-1 checkpoint mutant gene
in fission yeast cell cycle, 1411–1421
radl+ gene
of Schizosaccharomyces pombe, 1791–1803

Radixin
ezrin self-association and, 1061–1075
Raf-1 kinase isoform
cAMP-insensitive step for bypassing
of, MAP kinase cascade and,
1025–1035
Ras proteins
in Saccharomyces cerevisiae, mRNA level
control of, 59–70
Ras-related GTPase
and Rab, N-terminal domain, 71–85
Rat
cellular signaling in, 71–108
in hippocampal neurons of, in
endoplasmic reticulum and
intermediate compartment, 1315–
1332
RBL-2H3 mucosal mast cells of, 825–
839
selective translocation of protein
kinase C-β in PC12 cells during
growth factor-induced
neurotogenesis, 449–458
SHC-GRB2 complex formation in, 953–
966
visual system of, axonal transport
of kinesin heavy chain isoforms in,
21–40

Rat-1 cells
differential effects of cAMP on MAP
kinase cascade in, 1025–1035
RAT3/NUP133 gene
in Saccharomyces cerevisiae, 401–417
Ratio imaging
in myosin II regulatory light chain
phosphorylation, 1755–1768
RBL-2H3 mast cells
effects of wortmannin on antigen-
mediated signaling in, 1145–1158
FceRI-activated Ca2+ responses of,
825–839
Receptor recycling
of vacuolar protein sorting, in
Saccharomyces cerevisiae, 1089–1102
Redistribution
dermal, 929–944
Reductase
HMG-CoA, identification of sequences
in, 1533–1547
Replication
Cdc2/cyclin B complex control with
DNA synthesis inhibitors, in
Xenopus egg extracts, 199–213
of DNA, and origin recognition
complex, 741–756
REI1 gene
as component in endoplasmic
reticulum localization of Sec12p,
1459–1477
Retinoid receptor signal transduction
Hsp90 role in, 1833–1842
Retrovirus expression system
primary cell cultures with, CMP in,
1743–1753
rho-GAP
BEM2 encoding of, in budding yeast,
1011–1024
Ribonucleic acid.
See RNA
Ribosomal proteins
L1, co-localization with UPFI in
cytoplasm of yeast, 611–625
S6 (human), nuclear and nucleolar
targeting of, 1875–1885
RNA
Alu, SRP9/14 subunit of signal
recognition particle in primate
cells with, 471–484
poly(A)+
nuclear accumulation of, in
Saccharomyces cerevisiae, 401–417
nucleolus functions in transport of,
in yeast (Essay), 357–370
transport in Saccharomyces cerevisiae,
401–417
mRNA
accumulation of
from dynein heavy chains, deciliation of paramecia
and, 1549–1562
and Ras protein level control, in
Saccharomyces cerevisiae, 59–70
epithelial cell production of, and
matrix metalloproteinase
matrilysin expression in mouse,
851–869
export of
Mtr3p gene in Saccharomyces
cerevisiae and, 1103–1110
RAT3/NUP133 gene in Saccharomyces
cerevisiae, 401–417
glucose-dependent turnover in
Saccharomyces cerevisiae, 1125–1143
human CDNA clone hybridization to,
161–170
nonsense-mediated decay of, in
Saccharomyces cerevisiae, 611–625
of SPARC, and chicken chorioallantoic
membrane development, 327–343
stimulation of glucose transporter, and
elevation of GLUT1 encoding by,
1575–1589
of stromelysin-1, in transgenic mice,
1271–1285
transport of
in nucleolar accumulation of poly(A)+
RNA in yeast cells, 1515–1534
in yeast, nucleolar functions in
(Essay), 357–370
RNA polymerase I
conditional mutation in, 1103–1110
RNA polymerase II
human, hspRPB subunit of, and yeast
cell altering, 759–775

RNase
overexpression of, and
Schizosaccharomyces pombe zfs1
gene suppression of sterility
caused by, 1185–1195

RNP
and SRP9/14 subunit of signal
recognition particle in primate
cells, 471–484

Rodent connexins
functional analysis of selective
interactions among, 459–470
Rubella virus E3 glycoprotein
transmembrane Golgi retention signal
in, 7–20

Saccharomyces cerevisiae. See also Budding
yeast
actin mutation inhibition of meiosis-
dependent mitochondrial
rearrangement in, 1381–1396
actin-related protein Act3p in nucleus
of, 1263–1270
Apm1p of, late Golgi sorting function
for, 41–58
conditional-lethal β-tubulin mutation
tub2-150 in, 1241–1259
cytoplasmic tail domain of, regulation
of vacuolar protein sorting
receptor in, 1089–1102
cytoskeletal structure regulation in,
1011–1024
decay in, end gene mutations and,
1721–1742
gplIR1 coding region expression in,
1231–1240
mating type of, and origin recognition
complex, 741–756
MIF2 gene of, centromere protein
encoding and, 793–807
Mif2 homology domain in, and CENP-
C assembly at kinetochore, 1049–
1059
nucleolar protein mutations in, 1103–
1110
nucleolar functions of mRNA
transport in (Essay), 357–370
pheromone response pathway of, 889–
909
PI(4)P 5-kinase homologue in, 525–539
pseudohyphal conversion in, 759–775
RACH2 human gene complementing
cell cycle checkpoint mutant rad1-
1 in, 1411–1421
RAS mRNA level control in, 59–70
RAT3/NUP133 gene in, 401–417
Swi6 transcription factor in, 1641–1658
Subject Index

of v-src, and SHC-GRB2 complex in rat and chicken cells, 953–966
Transforming growth factor-α and phorbol ester induction of HB-EGF, 967–980
Transgenic mice
human GM-CSF receptor expression in, 497–508
normal reproduction with reduced functional sperm receptors on eggs of, 577–585
unscheduled alveolar development induced in, 1271–1285
Transgenic tobacco
soybean nodulin 26 expression in, 109–117
Translational control
selective, in basic fibroblast growth factor transgenic mice, 1861–1873
of signal recognition particle in primate cells, 471–484
Translocation
of protein kinase C-β, in PC12 cells during nerve growth factor-induced neuritogenesis, 449–458
Transmembrane domain signal
α1,3 mannosyltransferase sorting and, 809–824
Transmembrane glycoprotein
Sec12p, in yeast, 1459–1477
Trichocyst of Paramecium, and multigene family polypeptide coding, 649–659
Tropomyosin I and cytoskeletal structure determination in budding yeast, 1011–1024
Tropolin I
functional recovery of, in Drosophila, 1433–1441
ubiquitous, 1250
in Saccharomyces cerevisiae, 1241–1259
Tubulin distribution of, Drosophila KLP61F, 1503–1574
in, 1563–1574
Tyrosine kinase(s)
FceRI cross-linking activation of, in RBL-2H3 cells, 1145–1158
GPI-anchored protein solubility and, 929–944
pp60^{Src}, and signal transduction in focal adhesion complex, 1359–1365
pp60^{Src}, in binding to carboxyl terminal domain of focal adhesion kinase, 637–647
pp60^{Src} autophosphorylation, in rat and chicken cells, 953–966
Ubiquitin ligase activity in cyclosome, at end of mitosis, 185–198
Ultraviolet irradiation expression of RACH2 in Schizosaccharomyces pombe rad1-1 checkpoint mutant strains, 1411–1421
redistribution of cyclin-dependent kinase inhibitor 27 in mouse
fibroblast cells arrested with, 1197–1213
UF1I protein in Saccharomyces cerevisiae, 611–625
Uterine involution
matrix metalloproteinase matrilysin role in, 851–869
Vacuolar membrane
soybean nodulin 26 in transgenic tobacco targeted to, 109–117
Vacuolar protein sorting
receptor regulation, in cytoplasmic tail domain of Saccharomyces cerevisiae, 1089–1102
Vacuole function in yeast, and Fab1p, 525–539
VCAM-1 integrin α4 cytoplasmic domain and, 661–674
Ventralization of Drosophila embryo, 587–596
Vero cells HB-EGF induction in, 967–980
Vesicle transport
functional expression of, and inward rectification of K⁺ channel in yeast, 1231–1240
Vesicular stomatitis G protein and rubella virus E_V in Golgi retention signal identification, 7–20
Vesicular transport from endoplasmic reticulum, yeast Sec12p and, 1459–1477
Vinblastine suppressing individual microtubule dynamics in living BS-C-1 cells, 1215–1229
Vinculin
immunolocalization of syndecan-4 with, 1503–1513
VIP21-caveolin distribution and co-purification of GPI-anchored proteins and, 929–944
in vivo and in vitro oligomerization of, 911–927
Viral glycoproteins folding intermediates of, 1173–1184
Visual system of, axonal transport of kinesin heavy chain isoforms in, 21–40
Vitronectin carcinoma cell migration on, NF-kB-dependent gene expression inducing, 841–850
W-Src
GLUT1 induced by, in rat fibroblasts, 1575–1589
transformation-defective alleles of, rat and chicken cells, 953–966
WD repeats
conservation of, intermediate chains of sea urchin and Chlamydomonas outer arm dynein and, 685–696
Weel kinase in Cdc2 phosphorylation, 371–385
of Drosophila, for rescue of fission yeast from mitotic catastrophe and phosphorylation of Cdc2 in vitro, 1333–1347
of Xenopus, and cell cycle regulation, 119–134
Weintraub, Harold, in memory of (Essay), 757–758
Wortmannin antigen-mediated signaling in RBL-2H3 mast cells and, 1145–1158
Xenopus
egg extracts of ATP-bound unpolymerized actin in, 227–236
Cdc2/cyclin B complex control in, with DNA synthesis inhibitors, 199–213
Cdc25 phosphorylation and activation in, 215–226
oocytes of cell cycle regulation of Weel-like kinase of, 119–134
expression of gplIRK1 from guinea pig cardiac cDNA, 1231–1240
maturation in, cyclin B1 phosphorylation and, 1111–1124
Mek-1 activation of MAP kinase and histone H1 kinase in, 237–245
Yeast(s).
See also Saccharomyces cerevisiae; Schizosaccharomyces pombe
α1,3 mannosyltransferase, lumenal domain interaction and transmembrane domain signal mediation of sorting of, 809–824
budding. See Budding yeast
chymotrin of, Act3p as essential constituent of, 1263–1270
heat-shocked cells of, nuclear accumulation of poly(A)⁺ RNA in, 1515–1534
identification of sequences in HMG-CoA reductase, 1355–1547
inward rectification of K⁺ channel in, 1231–1240
nucleolus function in mRNA transport in (Essay), 357–370
PI(4)P 5-kinase homologue of, 525–539
SNARE complex in, BET3 gene and, 1769–1780
UF1I co-localization with polyribosomes in cytoplasm of, 611–625
Yeast chromosome III RER1 mutation localization on, 1459–1477
zf1 gene of Schizosaccharomyces pombe, and mating pheromone recognition pathway, 1185–1195
Zinc-finger protein functions in mating pheromone recognition pathway of Schizosaccharomyces pombe, 1185–1195
Instructions to Authors

Molecular Biology of the Cell, the journal owned and published by the American Society for Cell Biology, publishes papers that describe and interpret results of original research concerning the molecular aspects of cell structure and function. Studies whose scope bridges several areas of biology are particularly encouraged, for example cell biology and genetics. The aim of the Journal is to publish papers describing substantial research progress in full: papers should include all previously unpublished data and methods essential to support the conclusions drawn. The Journal will not, in general, publish papers that are merely confirmatory, preliminary reports of partially completed or incompletely documented research, findings of as yet uncertain significance, or reports simply documenting well known processes in organisms or cell types not previously studied. Methodological studies will be considered only when some new result of biological significance has been achieved with the method.

Organization of Manuscripts

Manuscripts should be written in concise, logical, and grammatically correct English, and all pages should be numbered. The manuscript should be organized into Abstract, Introduction, Methods, Results, Discussion, Acknowledgments, References, Tables, and Figure Legends. Every effort should be made to be brief, short of skipping essential data or methods. The Title Page should include the authors’ full names and affiliations, a running title of less than 40 characters (including spaces), and the phone and FAX numbers of the corresponding author. Each of the sections of a paper serves a different purpose. Therefore there is no reason to repeat in one section material described in another.

The Abstract should be short, no more than 200 words. The Introduction should summarize very briefly the background of the research to be reported, and should elaborate any theoretical background to the design of the experiments; it should not summarize the data. The Materials and Methods is an important part of a full paper. This section should contain the experimental protocols and describe the origin of any unusual or special materials, tissue, cell lines or organisms; genotypes should here be given in full. It is appropriate in this section to provide data to support the identity or purity of reagents (e.g. specificity of an antibody preparation), the reliability of methods (e.g. linearity of an assay), the sensitivity of an instrument, or the essential features of a genotype. Authors should seek to put most of the experimental detail into the Materials and Methods section, leaving the Results section for exposition of the experimental design and results.

The Results section should present, in a logical order, the experiments that support the conclusions to be drawn later in the Discussion. Particular care should be taken in the Results section to state results exactly; this is not the place for interpretations, extended lines of inference, arguments or speculations. The Discussion section, in contrast, is intended to allow the authors to propose their interpretation of their results, and to suggest what they might mean in a larger context. The view of the Editorial Board is that the Results section should conform to a high standard of rigor, but that an imaginative Discussion is the prerogative of the authors. The Results and Discussion sections may be subdivided further if subheadings give the manuscript more clarity.

Preparation of Figures

Authors must prepare all figures to the following specifications. *MBC* will notify authors of substandard figures at the time of the initial disposition of the manuscript, so that all figures can be brought up to standard by the authors before final acceptance of a paper.

Figures should be cited in numerical order in the text. Type legends double-spaced and consecutively on a separate sheet. Each legend should include a general figure title followed by explanation of specific parts. Arabic numerals should be used for figures and upper case letters for multiple parts of a single figure (e.g., Figures 1A and 2B).

Line drawings. Figures may be prepared by a professional artist or by computer. Computer graphs must be printed on a laserwriter or a professional quality plotter, not a dot-matrix printer. Line drawings may be submitted on 8.5 × 11 pages but will be reduced during production to single column width (8.2 cm) or less if the graph is relatively simple. Authors should plan the size of the numbers, letters and symbols to meet the following standards after reduction to a width of 8.2 cm: numbers and upper case letters should be 1.5 to 2 mm high; symbols should be 1 mm high and about 3 times the line width. Only standard symbols (○, ●, △, ▲, □, ■) will be accepted. Authors should confirm that their line drawings meet these specifications by inspecting all drawings after reduction to single column width.

Gels. Photographs of gels will be reduced to a lane width of 4 to 5 mm so that figures with 1 to 5 lanes will print a half column wide, 6 to 15 lanes one column wide, and more than 15 lanes 1.5 to 2 columns wide. The letters and numbers labeling these photographs should be planned so that they are 1.5 to 2 mm high after reduction to the Journal’s specifications. All labeling should be compact enough to avoid large blank spaces around the gel lanes. Separate groups of lanes...
Halftone photographs. All halftone photographs should be submitted at the reproduction size or with reproduction instructions. All figures, whether they consist of one or multiple halftones, should be planned to fill the width of one (8.2 cm) or two (17.5 cm) columns without large blank spaces. Multiple halftones should be mounted with spaces equal to or less than 3 mm separating the prints. Halftone figures slightly larger than a single column will automatically be reduced to a single column width. All micrographs should be carefully cropped to emphasize the main point of the image. Blank background areas and any material that is irrelevant or repetitive should be removed. All micrographs or groups of micrographs must have scale boards. In general, labels should be placed on the halftones rather than to the side to allow production of the halftone at maximum size.

Tables

Type tables double-spaced on sheets separate from the text and make them self-contained and self-explanatory. Do not use vertical rules. Label each table at the top with a Roman numeral followed by the table title. Insert explanatory material and footnotes below the table. Supply units of measure at the heads of the columns.

Conventions

This Journal follows the abbreviations of the Council of Biology Editors Style Manual. For chemical nomenclature, follow the Subject Index of Chemical Abstracts. Capitalize trade names and give manufacturers’ names and addresses. Abbreviations.

A term that does not appear in the abbreviations list of the Council of Biology Editors Style Manual must be used three times or more in a paper to qualify as an abbreviation. Spell out the term on first mention and follow it with the abbreviated form in parentheses. Thereafter use the abbreviated form. Supply a footnote of nonstandard abbreviations used in the paper, in alphabetical order, and give each abbreviation followed by its spelled-out version. In general, the number of abbreviations should be kept to a minimum.

Key words.

List up to five key words on the title page. Do not duplicate words in the article title. A key “word” can be a phrase that is no longer than three words.

References

References should be cited in the text by name and date and not by number (Beckerle et al., 1987 or Naga-
ods essential to the conclusions should be provided. The reviewers will be specifically requested to certify that the central conclusions of each paper do not depend on unpublished work, data not shown, or preliminary summaries of data intended for publication elsewhere. Interested readers should be able to reproduce the experiments relying solely on the paper describing them and published work cited by the paper. Citations to any published precedents for the results or conclusions will be expected, and reviewers will be instructed to reject papers with grossly insufficient or inappropriate citation of previous work. If the Editors consider a manuscript appropriate for the scope and content of the Journal, it will be sent to reviewers, one of whom will be an Editorial Board member. An editorial decision based on the review will be provided to the author within a few weeks of submission.

MBC will consider revised versions of manuscripts judged by reviewers to be of substantial merit but that lack some essential experiments or data, or which require extensive alteration for other reasons. A point-by-point reconciliation with the reviewers' comments will be required. Revised manuscripts will be examined by Associate Editors and, occasionally, re-reviewed. *MBC* will, however, only accept one revision of a manuscript.

All manuscripts are reviewed with the understanding that authors reporting research involving recombinant DNA, humans, and animals have carried out all of the experiments in accordance with the recommendations from the Declaration of Helsinki and the appropriate NIH guidelines, and that the research protocols have been approved where necessary by the appropriate institutional committees.

Publication

Publication schedule. Every effort will be made to publish manuscripts within three months after acceptance. Authors can help to reduce the publication time of a manuscript by returning corrected page proofs to the ASCB Publications Office not more than 48 hours after receipt.

Proofs. Page proofs are sent to the author, along with instructions on handling text and figure proofs. Corrections should be restricted to printer's errors. Information on authors' charges for reprints and special services will also be provided at this time.

Reprints. A reprint order form included with the page proofs must be returned before the Journal goes to press. As indicated on the forms, an institutional purchase order must be sent to the printer before reprints will be released.

Page and plate charges. There is a basic page charge of $35 per page. The author's inability to meet charges will not affect the publication of acceptable manuscripts. There is a $1000 charge to authors for printing one four-color page and $500 for each additional page.

Methods

Methods should reference all standard procedures, but should be complete enough so that the results can be verified by other laboratories.

Crystallographic Data

Authors of manuscripts reporting crystallographic studies of proteins and other biopolymers must submit the relevant structural data to the Protein Data Bank (Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973) [see Commission on Biological Macromolecules (1989) Acta Crystallogr. Sect. A45, 65], this submission will be specified in a footnote to the paper.

Distribution of Material

Publication of a paper in *MBC* implies that the authors agree to make available all propagative materials such as mutant organisms, cell lines, recombinant plasmids, vectors, viruses, and monoclonal antibodies that were used to obtain results presented in the article. Prior to obtaining these materials, interested scientists will provide the authors with a written statement that they will be used for noncommercial research purposes only.

Financial Support

All sources of financial support for the work reported must be acknowledged.

Submission of Sequences

Manuscripts published in *MBC* that have nucleotide sequences must have an EMBL database accession number. An accepted manuscript that does not have such a number by page proof stage will be held until the number is provided.
Does Your Library Subscribe to Molecular Biology of the Cell?
Published by The American Society for Cell Biology

Molecular Biology of the Cell (MBC) is the only journal owned and published by The American Society for Cell Biology. MBC publishes rigorous, scholarly, and complete papers that describe and interpret results of original research concerning the molecular aspects of cell structure and function. The journal encourages studies whose scope bridges several areas of cell biology.

ATTENTION: LIBRARIAN

I have reviewed Molecular Biology of the Cell and recommend that our library subscribe to it.

Name

Date

Title

Department

Comments

LIBRARY ORDER FORM

Please enter our subscription for Molecular Biology of the Cell at the rate of $300.00 for one year ($350.00 for libraries in foreign countries).

Method of payment (US currency only):

☐ Purchase Order
☐ Check

Library Name

Phone Number

Department

Address

Mail with payment to: The American Society for Cell Biology, 9650 Rockville Pike, Bethesda, MD 20814-3992.
phone (301) 530-7153; fax (301) 571-8304.
Abnormal Bone Growth and Selective Translational Regulation in Basic Fibroblast Growth Factor (FGF-2)
Transgenic Mice
Nuclear and Nucleolar Targeting of Human Ribosomal Protein S6
C. Schmidt, E. Lipsius, and J. Kruppa .. 1875–1885
Domains of Tau Protein, Differential Phosphorylation, and Dynamic Instability of Microtubules
B. Trinczek, J. Biernat, K. Baumann, E.-M. Mandelkow, and E. Mandelkow .. 1887–1902
Author Index .. 1903–1905
Subject Index .. 1907–1918

Cover
The photographs on the cover show the chromosomes and spindle at the first meiotic division in a spermatocyte of the grasshopper Chorthippus (Stenothrhus) lineatus. They were published in 1929 by Karl Bélaft in a paper entitled Beiträge zur Kausalanalyse der Mitose (Contributions to the causal analysis of mitosis). The four photographs follow a single spermatocyte for about 80 minutes after the testis was removed from the living animal and squashed gently under a coverslip in body fluid. One can see the oscillations of the bivalents along the major axis of the spindle and the spectacular pole-to-pole migration of the unpaired X-chromosome (arrow in Figures 41 and 42). The spindle itself is most clearly shown in Figure 40, where the vertical lines indicate the poles and define the major axis. These photographs were taken some 20 years before the introduction of phase contrast, and even longer before modern digital enhancement techniques. All contrast was obtained by careful manipulation of the apertures on the lamp and substage condensers, methods familiar to an earlier generation of light microscopists, who had no other way to bring out details in living cells. In other experiments Bélaft subjected cells to hypertonic salt solutions and saw the spindles elongate into bizarre structures several times their original length. He thought these experimental spindles mimicked the normal process by which the chromosome groups were pushed apart at anaphase. What Bélaft did not know (nor did I, until Bruce Nicklas told me) is that hypertonic treatment induces massive polymerization of new microtubules that have little to do with normal mitosis. Bélaft died at the age of 36 shortly after carrying out these pioneering experimental studies on living cells at the Kaiser Wilhelm-Institut für Biologie in Berlin. In his brief career he also published an extraordinary monograph on shape changes (i.e., mitosis and other events) in nuclei of protozoa: Der Formwechsel der Protistenkerne (Gustav Fischer, 1926).
Molecular Biology of the Cell

Volume 6 Number 12 December 1995

Essay

Force Generation by Microtubule Assembly/Disassembly in Mitosis and Related Movements

S. Inoue and E.D. Salmon ... 1619–1640

Articles

Cell Cycle-regulated Phosphorylation of Swi6 Controls its Nuclear Localization

Actin Filament Barbed-End Capping Activity in Neutrophil Lysates: The Role of Capping Protein-β2

M.J. DiNubile, L. Cassimeris, M. Joyce, and S.H. Zigmond .. 1659–1671

CP60: A Microtubule-associated Protein that Is Localized to the Centrosome in a Cell Cycle–specific Manner

G_{12}–mediated Activation of the MAP Kinase Cascade

A.M. Pace, M. Faure, and H.R. Bourne ... 1685–1695

The N-terminus of Fission Yeast DNA Polymerase α Contains a Basic Pentapeptide that Acts In Vivo as a Nuclear Localization Signal

D. Bouvier and G. Baldacci ... 1697–1705

Differential Regulation of Distinct Types of Gap Junction Channels by Similar Phosphorylating Conditions

dn5, dn6, and dn7: Mutations that Cause Actin Delocalization and Block the Internalization Step of Endocytosis in Saccharomyces cerevisiae

A.L. Munn, B.J. Stevenson, M.I. Gelli, and H. Riezman .. 1721–1742

Cartilage Matrix Protein Forms a Type II Collagen-independent Filamentous Network: Analysis in Primary Cell Cultures with a Retrovirus Expression System

A Fluorescent Protein Biosensor of Myosin II Regulatory Light Chain Phosphorylation Reports a Gradient of Phosphorylated Myosin II in Migrating Cells

P.E. Post, R.L. DeBiasio, and D.L. Taylor ... 1755–1768

BET3 Encodes a Novel Hydrophilic Protein that Acts in Conjunction with Yeast SNARES

G. Rossi, K. Kolstad, S. Stone, F. Pullaud, and S. Ferro-Novick .. 1769–1780

Cell Adhesion to Extracellular Matrix Regulates the Life Cycle of Integrins

Separation of Phenotypes in Mutant Alleles of the Schizosaccharomyces pombe Cell-Cycle Checkpoint

Gene rad1'

G. Kanter-Smoler, K.E. Knudsen, G. Jimenez, P. Sunnerhagen, and S. Subramani ... 1793–1805

A Mating Type-linked Mutation that Disrupts the Uniparental Inheritance of Chloroplast DNA also Disrupts Cell-Size Control in Chlamydomonas

E.V. Armburst, A. Ibrahim, and U.W. Goodenough .. 1807–1818

Generation of Truncated Forms of the NG2 Proteoglycan by Cell Surface Proteolysis

A. Nishiyama, X.-H. Lin, and W.B. Stallcup ... 1819–1832

A Role for Hsp90 in Retinoid Receptor Signal Transduction

S.J. Holley and K.R. Yamamoto ... 1833–1842

Localization and Possible Functions of Drosophila Septins

H. Fares, M. Peifer, and J.R. Pringle ... 1843–1859

(continued)