FLAGELLAR RADIAL SPOKES CONTAIN A Ca$^{2+}$-
STIMULATED NUCLEOSIDE DIPHOSPHATE KINASE

Ramila S. Patel-King, Oksana Gorbatyuk, Sachiko Takebe
&
Stephen M. King*

Department of Molecular, Microbial and Structural Biology,
University of Connecticut Health Center,
263 Farmington Avenue,
Farmington,
Connecticut 06030-3305

Tel: (860) 679 3347
Fax: (860) 679 3408
Email: steve@king2.uchc.edu

* To whom correspondence should be addressed.

Keywords: *Chlamydomonas* / Calmodulin / Flagellum / GTP / Nucleoside Diphosphate Kinase / Radial Spoke

Running Title: Nucleoside Diphosphate Kinase in Flagellar Radial Spokes
ABSTRACT

The radial spokes are required for Ca\(^{2+}\)-initiated intraflagellar signaling resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here we describe a novel nucleoside diphosphate kinase (NDK) from the *Chlamydomonas* flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants *pf14* (lacks radial spokes) and *pf24* (lacks the spoke head and several stalk components) but not in those from *pf17* (lacking only the spoke head). The p61 protein can be extracted from *oda1* (lacks outer dynein arms) and *pf17* axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-sepharose beads in a Ca\(^{2+}\)-independent manner, whereas IQ2 and IQ3 show Ca\(^{2+}\)-sensitive associations. Wildtype axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca\(^{2+}\). This Ca\(^{2+}\)-responsive enzyme, which accounts for ~45% of total axonemal NDKase, is missing from *pf14* axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca\(^{2+}\)-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes.
INTRODUCTION

The eukaryotic cilium/flagellum is a highly conserved motile organelle built around nine outer doublet microtubules and a central pair of singlet microtubules that form the 9 + 2 axoneme. Individual flagella provide for the motility of single cells such as mammalian sperm and *Chlamydomonas*, and ciliated epithelia are essential for fluid/mucus transport in many organs. Moreover, nodal cilia are required to define the left-right axis during mammalian development (Supp et al., 1997; Nonaka et al., 1998). Many cells also contain primary cilia which appear to play critical sensory roles during normal tissue function and development (Pazour and Witman, 2003). The power for ciliary/flagellar movement is generated by the inner and outer rows of dynein arms that associate with the A tubule of each microtubule doublet, and transiently interact with the B tubule of the adjacent doublet to produce a linear force vector that results in the microtubules sliding with respect to each other. This sliding motion is then converted to a flagellar bend by other axonemal components including the radial spoke and central pair microtubule complexes [see (Mitchell, 2000) for a review of *Chlamydomonas* flagellar structure and function].

In *Chlamydomonas*, control of flagellar waveform is mediated through Ca$^{2+}$ signaling pathways (Bessen et al., 1980; Kamiya and Witman, 1984). Reactivation experiments have revealed that all the machinery necessary for waveform regulation is integrated within the demembranated flagellar axoneme [*e.g.* (Kamiya and Witman, 1984)], and the central pair microtubule complex and radial spokes are thought to play key mechanochemical roles in this regulatory process [see (Smith and Yang, 2004) for recent review]. Cyclic AMP-dependent phosphorylation also exerts a regulatory effect.
on flagellar activity (Hasegawa et al., 1987; Habermacher and Sale, 1996) that involves the radial spoke and inner arm dynein systems. There is also accumulating evidence of a role for redox poise in activating flagellar motility in *Chlamydomonas* and both mammalian and sea urchin sperm (Ogawa et al., 1996; Patel-King et al., 1996; Aitken et al., 1997; Sadek et al., 2001; Harrison et al., 2002; Sadek et al., 2003). Furthermore, isolated *Chlamydomonas* flagella have been reported to exhibit two distinct nucleoside diphosphate kinase\(^1\) (NDKase) activities which catalyze the general reaction \(\text{ATP} + \text{NDP} \rightarrow \text{ADP} + \text{NTP}\); at least one of these enzymes has a marked preference for generating GTP (Watanabe and Flavin, 1976). Similarly, NDKase activity has been detected in sea urchin sperm flagella (Yanagisawa et al., 1968; Kobayashi et al., 1976), and there are also several mammalian NDKs (nm23-H5, -H7, -H8 and -H9) expressed either predominantly or exclusively in testis; for example, the human nm23-H5 NDK has recently been localized to the sperm flagellar axoneme (Munier et al., 1998; Munier et al., 2003). In sea urchin sperm outer arm dynein, the intermediate chain 1 (IC1) polypeptide consists of an N-terminal thioredoxin unit followed by three catalytic NDK modules (Ogawa et al., 1996); the mammalian homologue (Sptrx-2 [nm23-H8]) that is present in sperm also contains three NDK modules (Sadek et al., 2001). A second human protein (Txl-2 or nm23-H9) containing both thioredoxin and NDK units has been identified in the cilia of lung epithelia, the spermatid manchette and sperm flagellar axoneme (Sadek et al., 2003). Together, these observations suggest that generation of nucleotides other than ATP may be of widespread significance for ciliary/flagellar function.
Although the purified outer dynein arm from *Chlamydomonas* flagella does not contain a polypeptide similar to sea urchin dynein IC1 [see (King, 2002) for recent review], we (Patel-King *et al.*, 2002) and others (Ikeda *et al.*, 2003) recently identified a *Chlamydomonas* flagellar protein (here termed Rib72) consisting of three DM-10 domains (related to the N-terminal non-catalytic segment of human and rat NDK7 [nm23-H7 and nm23-R7]) followed by two consensus EF-hand motifs that could bind Ca\(^{2+}\). This intriguing molecule is tightly associated with the *Chlamydomonas* axoneme (Patel-King *et al.*, 2002), and forms part of the protofilament ribbons within the wall of the A-tubules of each outer doublet (Ikeda *et al.*, 2003). As NDKs are the only proteins of known function in which the DM-10 domain has been identified, we suggested previously that Rib72 may represent a Ca\(^{2+}\)-controlled regulatory component of a flagellar NTP synthesis system (Patel-King *et al.*, 2002).

As NDKase activity appears to be important for flagellar function and indeed may play a crucial and previously unconsidered role in motor regulation, we sought to identify NDK catalytic units within the *Chlamydomonas* flagellum. Here we describe a 61-kDa polypeptide consisting of an N-terminal NDK catalytic module and a C-terminal domain containing three IQ motifs that bind calmodulin. We demonstrate that p61\(^{\text{(footnote 2)}}\) is an integral component of the flagellar radial spokes which transmit signals from the central pair microtubule complex to the dynein motors and are essential for the control of microtubule sliding within the flagellar axoneme (Smith and Sale, 1992). We also observe that a Ca\(^{2+}\)-stimulated NDKase activity is missing in mutants lacking radial spokes, further suggesting that regulation of flagellar function through this structure may involve nucleotides other than ATP.
EXPERIMENTAL PROCEDURES

Molecular Biology

The full-length cDNA clone (AV645300) encoding *Chlamydomonas* p61 was identified in a BLAST search of the *Chlamydomonas* expressed sequence tag database using the testis-specific nm23-H5 NDK (Munier *et al.*, 1998) as the initial query sequence. This clone was obtained from the Kazusa DNA Research Institute, Chiba, Japan (Asamizu *et al.*, 1999). The entire 2.3 kb AV645300 clone was sequenced using the molecular core facility at the University of Connecticut Health Center. A 5’ section (140-718 bp) of this clone encoding the 5’-untranslated region (UTR) and NDK catalytic module were utilized to probe blots of *Chlamydomonas* genomic DNA, and also RNA samples obtained prior to and 30 mins following deflagellation. The 3’ portion of the clone has relatively low nucleotide complexity (71.2% GC content) which reflects the Ala-, Pro- and Glu-rich regions in the C-terminal portion of p61; the use of this region as a probe resulted in unacceptably high backgrounds.

Computational Methods

Sequence searches of the non-redundant database were performed using BLAST. Analysis of the p61 region (scaffold #399) of the *Chlamydomonas* genome and identification of additional related proteins was performed using the BLAST interface at the Department of Energy Joint Genome Institute, Walnut Creek, CA (http://genome.jgi-psf.org/chlre1/chlre1.home.html). The p61 cDNA sequence was assembled using the GCG suite of software. The repeat structure of p61 was identified and analyzed using COMPARE and DOTPLOT with a window size of 30 and stringency of 25. The COILS program was used to assess the probability of coiled coil regions (Lupas *et al.*, 1991).
The multiple sequence alignment was generated with CLUSTALW and used as the input for phylogenetic analysis. The molecular model for the catalytic domain of p61 was calculated using SWISSMODEL (Peitsch, 1996). The IQ motifs were identified using the Simple Modular Architecture Research Tool (http://dylan.embl-heidelberg.de).

Fusion Protein and Antibody Production

Residues 7-199, 7-424, 7-494, 424-494 and 7-586 of p61 were cloned into the pMAL-c2 vector across the XmnI/XbaI sites and expressed as C-terminal fusions with maltose-binding protein (MBP). These proteins were purified by amylose affinity chromatography and MBP-p61(7-199) used as the immunogen to inoculate rabbit CT220. The p61(7-199) segment was separated from MBP by digestion with Factor Xa and used to blot-purify a p61-specific antibody fraction from serum using the method of Olmsted (Olmsted, 1986). Fusion proteins begin at residue 7, as we were unable to amplify and subclone the appropriate regions when starting from residue 1.

Chlamydomonas Strains and Isolation of Flagellar Components

The following strains of *Chlamydomonas reinhardtii* were used in this study: cc124 (wildtype), oda1 (lacks outer dynein arms and associated docking complex), ida1 (lacks inner arm I1), ida4 (lacks inner arm I2), pf14 (lacks radial spokes), pf17 (lacks radial spoke heads), pf18 (lacks the central pair microtubule complex) and pf24 (lacks radial spoke heads and several other components – assembles truncated stalks). *Chlamydomonas* strains were grown in R medium (Harris, 1989), deflagellated using dibucaine and the flagella isolated by standard methods (King, 1995). Axonemes were obtained by treating flagella with 1% IGEPAL CA-630 (replaces Nonidet P-40) to remove the membrane and either prepared directly for electrophoresis, or further
fractionated by extraction with 0.6 M NaCl (King et al., 1986). From the deflagellation step onwards, a protease inhibitor cocktail (P-8340, Sigma Chemical Co., St. Louis, MO) was added to all solutions to yield final concentrations of 1 mM 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), 0.8 µM aprotinin, 20 µM leupeptin, 15 µM pepstatin A, and 14 µM N-(N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl) agmatine (E-64). Radial spokes were solubilized from NaCl-extracted *oda1* and *pf17* axonemes by treatment with 0.5 M KI and purified by centrifugation in 5-20% sucrose density gradients as described by (Yang et al., 2001).

Calmodulin Binding Assay

One hundred µg each of the MBP-p61 fusion proteins were incubated for 2 hours with 100 µl of calmodulin-Sepharose 4B beads (Amersham Biosciences) in 50 mM Tris.Cl pH 7.5, 100 mM NaCl, 0.1% Tween-20, 2 mM CaCl₂. Protein that did not bind was recovered following a brief centrifugation. The beads were then washed six times with buffer and resuspended in 200 µl 50 mM Tris.Cl pH 7.5, 100 mM NaCl, 0.1% Tween-20, 2 mM EGTA for 60 mins to elute proteins bound in a Ca²⁺-dependent manner. Following an additional wash with EGTA-containing buffer, protein that remained associated with the calmodulin-Sepharose beads in a Ca²⁺-independent manner was eluted with gel sample buffer.

Electrophoretic Methods

Routine analysis of fusion proteins was performed in 8% SDS polyacrylamide gels. Flagellar components were separated in 5-15% SDS polyacrylamide gradient gels and either stained with Coomassie blue, or transferred to nitrocellulose and probed with antibody CT220 using standard methods (Harrison et al., 1998). Polyclonal antibody
against radial spoke protein-3 (RSP3) (Williams et al., 1989) was kindly provided by Drs. Dennis Diener and Joel Rosenbaum (Yale University). Antibody reactivity was detected using a peroxidase-conjugated secondary antibody and an enhanced chemiluminescent system (ECL, Amerham Biosciences).

Nucleoside Diphosphate Kinase Assay

NDKase activity was determined using the bioluminescent method described by (Karamohamed et al., 1999). The assay is based on the transfer of the terminal γ-phosphate from GTP to ADP, and the subsequent utilization by luciferase of the ATP generated to yield light. A Tricine-based assay buffer system pH 7.8 containing MgSO$_4$, EDTA, dithiothreitol and bovine serum albumin was used (assay kit FL-AAM; Sigma Chemical Co., St. Louis, MO). ADP and GTP were both added to final concentrations of 0.25 mM, and the sample equilibrated for several mins to allow any contaminating ATP to be utilized. The assay was started by addition of axonemes derived from either wildtype or the pf14 mutant strain. Ca$^{2+}$ and EGTA were added to the assay mix as appropriate. Light output was integrated over 15 sec intervals using a TD-20/20 luminometer (Turner Designs, Sunnyvale, CA), and calibrated for each experiment with known amounts of ATP. All assays were performed in triplicate. Specific NDKase activity is expressed as μmoles phosphate transferred/min/mg protein. Addition of ADP alone generated negligible amounts of ATP, indicating that the axoneme and radial spoke preparations assayed did not contain a flagellar adenylate kinase.
RESULTS

Identification of a Flagellar Nucleoside Diphosphate Kinase

Chlamydomonas flagella have previously been demonstrated to contain an NDKase activity that exhibits a marked preference for generating GTP (Watanabe and Flavin, 1976). A BLAST search of the *Chlamydomonas* EST database using the human testis-specific nm23-H5 NDK (NDK5; Munier et al., 1998) as the initial query sequence identified two potential NDK-encoding clones (AV645300 and BG843793). Furthermore, analysis of the recently released *Chlamydomonas* genome (version 1) uncovered two additional NDK genes (in scaffolds #154 and 279). Phylogenetic analysis (Fig. 1a, b) of the sequences available from the databases indicated that the BG843793 clone and the scaffold #279 sequence both encoded NDKs closely related to those in the cytoplasm and chloroplasts of higher plants. Consequently, neither was considered likely to represent a flagellar-specific NDK. In contrast, AV645300 encodes an NDK catalytic module most closely related to the testis-specific mammalian enzymes and to the NDK domains present within the IC1 polypeptide of sea urchin sperm outer arm dynein; the scaffold #154 sequence also groups with these proteins. As it is present in the EST database and therefore presumably expressed in *Chlamydomonas*, the AV645300 clone was selected as a candidate to encode a flagellar NDK.

Southern blot analysis of PstI-, SmaI- and BamHI-restricted genomic DNA using the 5’ end of the AV645300 EST as a probe resulted in single bands indicating that *Chlamydomonas* contains only one gene for this NDK (Fig. 1c). A search of the *Chlamydomonas* genome also detected only a single 2,763 bp gene consisting of four exons within scaffold #399 (not shown). Northern blotting provided further evidence that
AV645300 indeed encodes a flagellar protein. The 2.54 kb mRNA for this clone was essentially undetectable in *Chlamydomonas* cells that had not been deflagellated, but was highly upregulated 30 mins following flagella excision as is characteristic of integral flagellar components (Fig. 1d).

Properties of the p61 Nucleoside Diphosphate Kinase

The entire AV645300 clone of ~2.3 kb was sequenced and found to contain a single open reading frame encoding a 586-residue protein (termed p61) with a mass of 61,364 Da and a predicted pI of 4.48 (Fig. 2). The clone contains an in-frame stop codon within the 5’-UTR, a perfect copy of the *Chlamydomonas* polyadenylation signal and a polyA tract at the 3’ end. The p61 protein has a NDK catalytic module at the N-terminus. This domain (residues 1-200) shares 41% sequence identity (60% similarity) with human testis-specific nm23-H5 NDK (accession no. P56597). Sequence analysis and molecular modeling of residues 2-142 (Fig. 3) indicates that this unit contains all the conserved NDK residues, including the active site motif (residues 118-126), that have been demonstrated previously from both structural and mutagenesis studies to be essential for catalysis (Tepper *et al.*, 1994). In addition to multiple putative phosphorylation sites, p61 contains three IQ motifs that could potentially bind calmodulin. These motifs conform precisely to the (I/V/L)QXXX(K/R)XXX(K/R) consensus (Rhoads and Friedberg, 1997) and are located within the C-terminal domain at residues 362-391, 440-469 and 512-541.

Further sequence analysis (Fig. 3) revealed that the entire C-terminal portion of p61 (residues 221-586) is relatively hydrophilic and Ala-rich, containing 25% Ala overall. In addition, the regions encompassing residues 265-349 and 546-586 are Pro-rich (36.5% Pro) and Glu-rich (36.5% Glu), respectively. As the C-terminal 40-residue
Glu-rich domain also contains 32% Ala, this region is very likely helical. However, a high coiled coil prediction was obtained using the COILS program only with a scan window of 14 (but not 21 or 28) and thus, this segment is unlikely to form a coiled coil (Lupas et al., 1991). The regions immediately surrounding the three IQ motifs are very similar. Indeed, in the case of IQ2 and IQ3, these motifs are embedded in ~70-residue repeat sequences (residues 424-494 and 496-565) that share 92.8% identity.

To further analyze this presumptive flagellar NDK, the N-terminal region (residues 7-199) of p61 was expressed as a C-terminal fusion with maltose-binding protein and used to immunize rabbit CT220. The resulting serum was blot-purified against p61 (residues 7-199) obtained by digestion of the fusion protein with factor Xa. We also generated a MBP fusion protein containing p61 residues 7-586. This polypeptide has a calculated molecular mass of 103,130 Da, but migrated with $M_r = \sim 135,000$ (Fig. 4). Upon digestion with factor Xa, this fusion protein yielded MBP ($M_r = \sim 40,000$ as expected) and the fusion partner which had a $M_r = \sim 102,000$ (Fig. 4a). Thus, recombinant p61 migrates anomalously in SDS-polyacrylamide gels as has been found previously for several other axonemal proteins [e.g. DC1 of the outer arm docking complex (Koutoulis et al., 1997)]. Furthermore, the MBP-p61(7-586) protein was highly susceptible to proteolysis by endogenous proteases. Indeed, when we examined axoneme samples prepared in the absence of a comprehensive protease inhibitor cocktail, multiple bands ranging from $M_r \sim 102,000 - 20,000$ were detected by the CT220 antibody (not shown). However, when protease inhibitors were added to the isolation buffers, all bands except for those with $M_r = \sim 102,000$ and 40,000 (Fig. 4b) were dramatically reduced or completely absent indicating that the larger band is highly susceptible to proteolysis. As
recombinant p61 exhibits anomalous electrophoretic mobility (see above), we conclude that the $M_r \approx 102,000$ band represents native p61. The CT220 antibody was raised against the conserved NDK region of p61, and thus it is likely that the $M_r 40,000$ band represents a second flagellar NDK (most probably the *Chlamydomonas* ortholog of human nm23-H7 that is encoded on scaffold 154 and has a predicted mass of 39.9 kDa).

p61 is Missing from pf14 and pf24 Axonemes

Fractionation of *Chlamydomonas* flagella revealed that p61 and the $M_r 40,000$ protein are integral components of the axoneme and remained tightly associated with that structure following both detergent treatment to remove the flagellar membrane and soluble matrix components, and extraction with 0.6 M NaCl which is used to solubilize the dynein arms (Fig. 5). In an initial effort to ascertain the axonemal location of p61, we used the CT220 antibody to probe axoneme samples prepared from wildtype *Chlamydomonas* and mutant strains lacking the outer dynein arm and docking complex (*oda1*) or inner arms I1 (*ida1*) and I2 (*ida4*), the radial spokes (*pf14*) and the central pair microtubule complex (*pf18*). The $M_r 40,000$ band detected by CT220 was present in all samples (Fig. 6a-c). In contrast, p61 and its proteolytic breakdown products were completely missing from *pf14* axonemes (Fig. 6a, b). Further analysis revealed that p61 was present in axonemes derived from *pf17* which lack only the radial spoke head (Fig. 6c), suggesting that p61 is an integral component of the radial spoke stalk. Interestingly, p61 was almost completely absent from *pf24* axonemes; this strain is defective for RSP2 and lacks the spoke head and several other components resulting in a truncated stalk (Huang *et al.*, 1981; Yang and Sale, 2004). This suggests that p61 associates with the radial spoke stalk near RSP2 in the region distal to the doublet microtubules.
p61 Copurifies with RSP3

To test whether p61 is indeed a radial spoke component, we first treated axonemes from the mutant *oda1* (lacks outer arm dynein and docking complex) with 0.6 M NaCl to remove additional dynein components. Subsequently, these treated axonemes were extracted with 0.5 M KI to solubilize the radial spokes as described by (Yang *et al.*, 2001). Following dialysis to remove KI, the extract was sedimented in a 5-20% sucrose density gradient (Fig. 7a, b). Both the Mr40,000 protein and p61 were solubilized under these conditions. The majority of p61 sedimented near the bottom of the gradient (in fractions 1-3) which is characteristic of isolated radial spokes (Yang *et al.*, 2001); there was also a much smaller fraction of p61 present in fractions 6-8. In contrast, the Mr40,000 protein was found near the top of the gradient in fractions 11-14. To determine whether p61 comigrated with *bona fide* radial spoke proteins, we probed the same fractions with an antibody against RSP3 (Williams *et al.*, 1989). The RSP3 peak was found close to the bottom of the gradient as described previously (Yang *et al.*, 2001), and coincided with p61. Based on immunoblot analysis and/or by comparison with the electrophoretic patterns observed by (Yang *et al.*, 2001), p61 and several other RSP proteins could be readily identified in the peak sucrose gradient fractions (Fig. 7a). Densitometric analysis using the RSP3+RSP4 band as a standard, indicates that p61 is present at a ratio of 0.85:1. Thus, p61 appears to be a stoichiometric component of the radial spokes.

To further confirm that p61 is an integral component of the radial spokes, we purified this structure from the mutant *pf17* which assembles a radial spoke that lacks five head components (Huang *et al.*, 1981) and consequently sediments more slowly in
sucrose gradients (Yang et al., 2001). In these samples, p61 was found in fractions 1-7 (peak was in fraction 4) and again precisely comigrated with RSP3 (Fig. 7c). The migration of the M,40,000 band from pf17 axonemes was unaffected, and this protein remained near the top of the gradient in fractions 13-15. Thus, we conclude that p61 is indeed an integral component of the flagellar radial spoke stalk.

p61 Interacts with Calmodulin in vitro

Sequence analysis (Fig. 3) revealed that p61 contains three canonical IQ motifs (IQ2 and IQ3 are identical) that could potentially act to bind calmodulin (Rhoads and Friedberg, 1997). To test this, we examined whether the MBP fusion proteins containing the NDK domain alone [p61(7-199)] or with various IQ motif combinations [NDK+IQ1, p61(7-424); NDK+IQ1+IQ2, p61(7-494); NDK+IQ1+IQ2+IQ3, p61(7-586)] would interact specifically with calmodulin immobilized on Sepharose 4B beads. We found that ~60% of total added MBP-p61(7-586) adhered to the calmodulin resin in the presence of Ca^{2+}, and that ~70% of bound protein was eluted following addition of 2 mM EGTA (Fig. 8). In contrast, <10% of the truncated p61(7-199) fusion protein was found associated with the calmodulin-Sepharose beads; all of this presumably non-specifically bound protein was eluted by washing with EGTA. As IQ motifs usually bind calmodulin in a Ca^{2+}-independent manner, we next tested whether all motifs within p61 exhibited the same properties. We observed that 87% of a construct containing IQ1 alone bound calmodulin in a Ca^{2+}-independent fashion. However, addition of one or both other IQ motifs caused significant amounts (~50% with IQ2) of the fusion protein to be eluted by EGTA. Furthermore, when IQ2 alone was fused to MBP, the resulting protein bound calmodulin only in the presence of Ca^{2+}, and was essentially completely eluted by EGTA.
These observations suggest that p61 can bind calmodulin through each of the three IQ motifs. However, while association with calmodulin via IQ1 is Ca\(^{2+}\)-independent, interaction through IQ2 and IQ3 is disrupted upon EGTA addition.

Radial Spokes Contain a Ca\(^{2+}\)-regulated Nucleoside Diphosphate Kinase

To assess if radial spokes indeed exhibit NDKase activity *in situ* and to determine whether or not that activity is Ca\(^{2+}\) stimulated, we first examined the enzymatic properties of flagellar axonemes prepared from wildtype *Chlamydomonas* and from the mutant *pf14*. Our assay system tested for the transfer of the terminal phosphate of GTP to ADP and the subsequent utilization of generated ATP by luciferase. Although *Chlamydomonas* flagella contain an adenylate kinase activity, most of this activity is readily solubilized (Watanabe and Flavin, 1976). Direct measurement of ATP production from ADP in the absence of an NTP revealed that the detergent-extracted flagellar axonemes used here contained negligible adenylate kinase activity. We observed that wildtype axonemes in the presence of 1 mM EGTA exhibited a specific NDKase activity of 0.46 ± 0.03 µmoles phosphate transferred/min/mg protein (values given are the mean ± standard deviation for samples from three separate axoneme preparations). This value is close to the activity of 0.53 µmoles phosphate transferred/min/mg protein reported previously by (Watanabe and Flavin, 1976) for flagella extracted using low ionic strength dialysis. Replacement of EGTA with 1 mM Ca\(^{2+}\) resulted in a significant increase in axonemal NDKase to 0.81 ± 0.10 µmoles phosphate transferred/min/mg protein. Axonemes prepared from *pf14* had a somewhat lower total specific activity of 0.25 ± 0.08 µmoles phosphate transferred/min/mg protein in the presence of EGTA. This value increased to 0.34 ± 0.06 µmoles phosphate transferred/min/mg protein upon Ca\(^{2+}\) addition. As *pf14* axonemes
completely lack p61, these observations suggest that the p61 NDK accounts for approximately 45% of axonemal NDKase activity. Furthermore, this activity appears to be stimulated several-fold in the presence of Ca\(^{2+}\), whereas the NDKase activity remaining in pf14 axonemes was affected to a lesser extent by this cation. We have also observed that in addition to GTP, the axonemal NDKases can utilize other nucleotides, including CTP, ITP, TTP and UTP.

To further test whether isolated radial spokes indeed contain a functional NDKase, we determined the enzyme activity present following sucrose gradient fractionation of 0.5 M KI extracts from oda1 and pf17 axonemes. We observed that peaks of NDKase activity in the various fractions precisely coincided with radial spoke-associated p61 and also with p40 nearer the top of the gradient (Fig. 7b, c; lower panels). The p61 and p40 NDK peaks from the oda1 KI extract sucrose gradient (fractions 1 and 12) had specific activities of 6.2 and 8.7 μmoles phosphate transferred/min/mg protein, respectively.
DISCUSSION

Studies on both sea urchin sperm and *Chlamydomonas* revealed that demembranated flagella exhibit NDKase activity, suggesting that nucleotides other than ATP may be of functional importance (Yanagisawa *et al.*, 1968; Kobayashi *et al.*, 1976; Watanabe and Flavin, 1976). However, apart from the identification of NDK modules in the IC1 polypeptide from sea urchin sperm outer arm dynein (Ogawa *et al.*, 1996), the intraflagellar location of these enzymes and the role they might play in motility has remained almost completely unexplored. Here we describe a functional Ca\(^{2+}\)/calmodulin-regulated NDK (termed p61 or RSP23)\(^2\) from flagella of *Chlamydomonas* that is present in the radial spoke stalk, suggesting that intraflagellar Ca\(^{2+}\) signaling involves production of nucleotides other than ATP.

p61(RSP23) is a Component of the Radial Spoke Stalk

The p61 (RSP23) protein contains a single NDK catalytic module at the N-terminus; this region contains all the residues that in other NDKs have been shown to be necessary for catalytic activity (Tepper *et al.*, 1994). Indeed, we observed that radial spokes contain ~45% of the total axonemal NDKase activity. The C-terminal 381-residue section has a high Ala content (~25% overall) and consists of several distinct regions, including an 85-residue Pro-rich domain adjacent to the catalytic module. This is followed by a triple repeat structure, each section of which contains an IQ motif that could potentially bind calmodulin. The protein terminates in a highly acidic 40-residue region.

We prepared an antibody against the catalytic domain of p61 and found that it detected two bands of M\(_r\)102,000 and 40,000 in flagella. The M\(_r\)102,000 band was...
identified as p61 following analysis of recombinant protein. The anomalous migration of p61 in SDS gels is likely caused by the Ala-, Pro- and Glu-rich C-terminal domain as the recombinant catalytic NDK module alone migrated with the predicted Mr. This polypeptide was absent from pf14 mutant axonemes which do not assemble the entire radial spoke, and from pf24 axonemes that lack the distal region of the spoke stalk and the head. However, p61 was not missing in any of the other mutant strains that we analyzed, including pf17 that only lacks the radial spoke head domain. As is characteristic of the radial spokes, p61 could be extracted from the axoneme only with a strong chaotrope (0.5 M KI) but not with 0.6 M NaCl that is used to solubilize the dynein arms (Yang et al., 2001). Furthermore, following KI extraction from both oda1 and pf17 axonemes, p61 copurified in sucrose gradients with the radial spoke cAMP-dependent protein kinase-anchoring protein RSP3. Thus, we conclude that p61 is an integral component of the radial spoke stalk and is likely located in the region distal to the doublet microtubules.

Interconnection of Ca\(^{2+}\) Signaling with NTP Synthesis

Several Ca\(^{2+}\)-binding proteins have been identified within the *Chlamydomonas* flagellum. These include a light chain (LC4) of outer arm dynein (King and Patel-King, 1995), an outer arm docking complex protein (DC3) (Casey et al., 2003), centrin which is associated with a subset of inner dynein arms (Piperno et al., 1992), calmodulin (Gitelman and Witman, 1980; Van Eldik et al., 1980; Witman and Minervini, 1982) and see (Otter, 1989) for review) and the protofilament component Rib72 (Patel-King et al., 2002; Ikeda et al., 2003). Identification of Ca\(^{2+}\)-binding proteins associated with individual dynein heavy chains, and analysis of the microtubule-binding properties of
mutant dyneins lacking individual motor units (Sakato and King, 2003) suggests that Ca2+ signals may impinge directly on particular heavy chains. This does not however preclude the possibility that Ca2+ also signals through additional mechanisms. Indeed, (Yang et al., 2001) recently reported that one pool of flagellar calmodulin is present within the radial spokes although the stoichiometry remains to be ascertained. Furthermore, pharmacological studies support a role for radial spoke calmodulin in controlling dynein-driven microtubule sliding possibly through a calmodulin-dependent protein kinase (Smith, 2002).

The C-terminal domain of p61 contains three IQ motifs that are predicted to bind calmodulin (Rhoads and Friedberg, 1997). Indeed, we found that the full-length recombinant p61 protein bound calmodulin-Sepharose, whereas the NDK catalytic domain alone did not. Interestingly, p61 contains two classes of IQ motif that exhibit distinct interactions with calmodulin. IQ1 acts as a canonical Ca2+-independent binding domain. However, IQ2 and IQ3 (which are identical) bound calmodulin through Ca2+-sensitive interactions. Although, IQ motifs are generally considered to represent Ca2+-independent calmodulin binding sites, there have been several previous reports of Ca2+-dependent interactions via these segments [e.g. myosin V (Trybus et al., 1999) and IRS-1 (Munshi et al., 1996)]. Thus, we suggest that at least some of the calmodulin present within the radial spokes is likely permanently associated with p61 through IQ1. This is consistent with our observation that the radial spoke-associated NDK accounted for much of the axonemal Ca2+-stimulated NDKase activity. It is also possible that soluble calmodulin present in the flagellar matrix can bind to the additional IQ motifs within p61 following a Ca2+ increase. As flagellar axonemes contain multiple calmodulin and Ca2+-
binding proteins, analysis of reconstituted p61/calmodulin will be required to demonstrate that Ca\(^{2+}\) regulation of NDKase activity occurs directly through the p61 C-terminal domain.

Modulation of p61 activity in response to a Ca\(^{2+}\) signal would lead to a local increase in GTP (or other NTP) levels (Fig. 9). This suggestion further implies that downstream GTP-binding proteins are present in the axoneme that could transduce this signal (see below). This hypothesis does not of course preclude the possibility that calmodulin also associates with other components of this large macromolecular complex. For example, radial spoke protein 2 (RSP2) contains two 1-8-14 calmodulin-binding motifs [see Rhoads and Friedberg (1997) for motif description] and has recently also been shown to bind calmodulin in a Ca\(^{2+}\)-dependent manner (Yang and Sale, 2004).

What Role Might GTP Play in Flagellar Function?

The biochemical studies of (Watanabe and Flavin, 1976) on *Chlamydomonas* flagella revealed the presence of two distinct soluble NDKs (one of which likely derived from cell body contamination) and also an insoluble NDKase activity; these enzymes had a significant preference for generating GTP. Our data support their observation that most *Chlamydomonas* flagellar NDKase activity is tightly associated with the axoneme. The small soluble fraction described by (Watanabe and Flavin, 1976) may have derived from proteolysis of p61, as we observed a soluble p61-derived fragment (M\(_r\)~20,000) containing the NDK module in flagella prepared in the absence of a comprehensive inhibitor cocktail (data not shown). Alternatively, it may represent a flagellar pool of the standard cytosolic NDK.
There are several distinct possibilities for what the GTP (or other nucleotides) generated by these enzymes in response to a Ca2+ signal might be used for. First, as originally suggested by (Watanabe and Flavin, 1976), flagellar GTP could be employed to recharge tubulin dimers that have dissociated from the doublet and/or central pair microtubules and thus are in a non-polymerizable state as they contain GDP. Although this remains a formal possibility, the identification of intraflagellar transport as a mechanism for replenishing axonemal components (Kozminski et al., 1993), our observation that p61 is present exclusively in the radial spokes that are arrayed along the entire axonemal length, and the fact that the radial spoke-defective mutants lacking p61 make full-length flagella all argue against this model.

A second more likely possibility is that GTP generated in response to a Ca2+ signal is utilized either directly by a GTP-binding switch protein or other specific GTPase, or by a guanylate cyclase which could convert GTP to cGMP and lead to second messenger signaling (Fig. 9). Intriguingly, Chlamydomonas RSP2 contains a GAF (cyclic GMP, adenylyl cyclase, FhlA) domain (Yang and Sale, 2004), some of which are known to bind cyclic nucleotides and act as regulatory modules [see (Hurley, 2003) for recent review]. Furthermore, as both RSP2 and p61 are missing in the pf24 mutant, they are likely located close together within the spoke superstructure. Although cGMP-mediated effects on flagellar motility have not previously been reported in Chlamydomonas, studies in Paramecium have revealed a role for cGMP in control of both swimming speed and direction of the ciliary power stroke (Bonini and Nelson, 1988), and have identified proteins phosphorylated in a cGMP-dependent manner (Ann
and Nelson, 1995). Furthermore, cyclic nucleotide-gated channels control Ca2+ entry into mammalian sperm [see for example (Wiesner et al., 1998)].

A third possibility derives from the observation that both sea urchin and mammalian sperm contain modular proteins consisting of thioredoxin modules and catalytic NDK domains (Ogawa et al., 1996; Sadek et al., 2001; Sadek et al., 2003); the sea urchin protein is known to be an integral component of the outer dynein arm. This suggests an interconnection between flagellar redox state and NDKase activity. In *Chlamydomonas*, flagellar thioredoxins have only been found associated with the α and β heavy chains of the outer dynein arm (Patel-King et al., 1996). However, it is possible that redox changes, Ca2+ signaling and NDKase activity are interconnected through additional flagellar components in this organism. Finally, initial proteomic studies of human cilia have identified at least one enzyme (pyruvate dehydrogenase) normally associated with intermediary metabolism (Ostrowski et al., 2002). Consequently, as GTP plays key roles in several metabolic pathways, it is possible that some of these reactions also occur in the flagellar matrix.

Other Chlamydomonas NDKs

In addition to p61, we identified three other NDKs within the *Chlamydomonas* genome. Two of these are single NDK modules with no associated domains and clearly group with the canonical cytosolic and chloroplast enzymes of higher plants. The third NDK (encoded on genome scaffold #154) has a predicted size of 39.9 kDa and is most closely related to p61 and the mammalian testis-specific NDKs. Analysis of the genome sequence indicates that this protein contains an N-terminal DM-10 domain similar to the three found in Rib72 (Patel-King et al., 2002; Ikeda et al., 2003), followed by two
catalytic NDK modules. Although no ESTs have so far been identified for this sequence in *Chlamydomonas*, our antibody against the catalytic domain of the p61 NDK does detect an axonemal component of appropriate size (M_r 40,000) suggesting that this protein also may function in flagella. Furthermore, the apparent mammalian ortholog (nm23-H7) is expressed in a testis-specific manner (Munier *et al.*, 2003).

In conclusion, we have described here a NDK within the *Chlamydomonas* flagellar radial spokes that binds calmodulin and is regulated in a Ca^{2+}-dependent manner. These data suggest a mechanism for integrating intraflagellar Ca^{2+} signaling through the radial spokes with the production of NTPs. Consequently, we predict that *Chlamydomonas* flagella contain signaling protein(s) that specifically bind nucleotides other than ATP. We are currently seeking to identify such axonemal components by photoaffinity labeling with biotinylated nucleotide analogs.
ACKNOWLEDGEMENTS

We thank Dr. Pinfen Yang (Marquette University) for helpful discussions, Drs. Dennis Diener and Joel Rosenbaum (Yale University) for providing antibody against radial spoke protein 3, and Dr. Peter Setlow (University of Connecticut Health Center) for the use of his luminometer. This study was supported by grant GM51293 from the National Institutes of Health. SMK is an investigator of the Patrick and Catherine Weldon Donaghue Medical Research Foundation.

FOOTNOTES

1. Abbreviations used: MBP, maltose-binding protein; NDK, nucleoside diphosphate kinase; RSP, radial spoke protein; UTR, untranslated region

2. Nomenclature: a recent report (Yang et al., 2001) identified 22 distinct components (including calmodulin and the LC8 dynein light chain) within *Chlamydomonas* flagellar radial spokes. These proteins have been termed RSP1-22. In an effort to retain a consistent naming system, we propose that p61, which we demonstrate here is also an integral radial spoke component, be henceforth termed RSP23.
REFERENCES

FIGURE LEGENDS

Figure 1 NDK Phylogeny and Northern/Southern Blot Analysis of p61

a) The *Chlamydomonas* ESTs AV645300 (encoding p61) and BG843793, the NDKs identified in scaffolds #154 and 279 of the *Chlamydomonas* genome, the NDK modules from the IC1 polypeptide of sea urchin (*Anthocidaris crassispina*), human and murine NDK5, rat NDK7, human Sptrx-2, human Txl-2 and the cytosolic and chloroplast NDKs from spinach, pea and *Arabidopsis* were aligned using CLUSTALW. Residues conserved in 30% or more of the sequences were shaded using BOXSHADE.
b) The CLUSTALW alignment was used as the input to generate the neighbor-joining unrooted tree shown. The BG843793 EST and NDK encoded on scaffold 279 clearly group with the NDKs of higher plants. In contrast, AV645300 (p61) and the scaffold #154-9 NDK (p40) are more closely related to the testis-specific mammalian enzymes.
c) Southern blot analysis of *Chlamydomonas* genomic DNA restricted with SmaI, PvuII, PstI and BamHI and probed with the 5’ region of the AV645300 EST clone. Single bands were detected in the SmaI-, PstI- and BamHI-digested samples.
d) Northern analysis of *Chlamydomonas* RNA obtained from nondeflagellated cells (NDF) and from cells that had undergone flagella excision and been allowed to regenerate new flagella for 30 mins (30’postDF). A 2.54 kb mRNA that is highly upregulated following deflagellation was detected by the AV645300 probe.

Figure 2 The p61 cDNA Sequence

The entire 2.3 kb cDNA clone (AV645300) encoding full-length p61 was sequenced. The p61 protein consists of 586 residues and has a calculated mass of 61,394
Da and a \(pI \) of 4.48. The 5’ UTR contains a single in-frame stop codon and the putative polyadenylation signal in the 3’UTR is underlined. The clone terminates in a polyA tract. This annotated sequence is available under GenBank/EMBL/DDBJ accession no. AY452667.

Figure 3
The Domain Structure of p61

A map of p61 illustrating the location of the NDK domain, IQ motifs and regions rich in specific amino acids is shown. A Kyte and Doolittle hydropathy plot is inserted above the map. Almost the entire C-terminal region is hydrophilic in nature. The lower panel shows a dot plot comparison of p61 to illustrate the repetitive structure containing the three IQ motifs present within the C-terminal region of the protein. The inset at lower right is a molecular model for the p61 NDK domain (residues 2-142) built using SWISSMODEL. Indicated on the model are the residues known to be required for the catalytic activity of other NDKs (Tepper et al., 1994). All these active site residues are completely conserved in p61.

Figure 4
p61 Migrates Anomalously in SDS-Polyacrylamide Gels

a) Twenty \(\mu \)g of the MBP-p61(7-586) fusion protein was electrophoresed in a 5-15% acrylamide gradient gel, both prior to and following incubation with factor Xa, and stained with Coomassie blue. The intact fusion protein has a calculated mass of 103,130 Da but migrated with \(M_r \approx 135,000 \). The minor bands derive from cleavage of MBP-p61(7-586) by endogenous bacterial proteases. Following factor Xa cleavage of the
fusion protein, MBP migrated at ~M₅,40,000 as observed previously, whereas the p61(7-586) segment (calculated mass = 60,662 Da) had Mᵦ=100,000.

b) Wildtype axonemes (~100 µg) prepared in the presence of a protease inhibitor cocktail were electrophoresed in a 5-15% acrylamide gradient gel and either stained with Coomassie blue (left panel) or blotted and probed with the CT220 antibody (right panel). Two prominent bands of Mᵦ102,000 and 40,000 were obtained. The upper band corresponds to p61 which migrates anomalously. The diffuse band located above tubulin is a proteolytic fragment of p61.

Figure 5
NDKs are Integral Axonemal Components

Chlamydomonas flagella were treated with a nonionic detergent to remove the flagellar membrane and soluble matrix components yielding microtubule-based axonemes, which were subsequently extracted with 0.6 M NaCl. Equivalent samples of each fraction were separated in a 5-15% acrylamide gradient gel and either stained with Coomassie blue (upper panel) or blotted to nitrocellulose and probed with CT220 antibody (lower panels). Both p61 and the Mᵦ40,000 band are integral axonemal components that are almost completely resistant to extraction by high ionic strength buffers containing 0.6 M NaCl.

Figure 6
p61 is Missing in Mutant Axonemes Lacking Radial Spokes

a) Axonemes were obtained wildtype *Chlamydomonas* (WT) and from mutants lacking outer (*oda1*) and inner (*ida1* and *ida4*) dynein arms, radial spokes (*pf14*), central pair microtubule complex (*pf18*). Following electrophoresis, samples were stained with
Coomassie blue (upper panels) or examined for CT220 immunoreactivity (lower panels). The M₄₀,₀₀₀ protein (p₄₀) was detected in all samples, whereas p₆₁ was absent only in pf14 axonemes.

b) Axonemes from the pf14 mutant were prepared in the presence of a comprehensive protease inhibitor cocktail. The sample was electrophoresed and stained with Coomassie blue (left panel) or blotted and probed with CT220 (right panel). These axonemes contain the M₄₀,₀₀₀ band. However, p₆₁ and its breakdown product migrating just above tubulin (see Fig. 4b) were completely missing.

c) To assess the location of p₆₁ within flagellar radial spokes, axonemes were prepared from wildtype, pf14, pf17 (lack the spoke head) and pf24 (no spoke head and truncated stalk) axonemes. The p₆₁ protein was present in pf17, but levels were drastically reduced in pf24 (upon prolonged exposure, a very weak p₆₁ band was detected in this mutant). This suggests that p₆₁ is located within the distal portion of the radial spoke stalk.

Figure 7 p₆₁ Copurifies with Radial Spoke Protein 3

a) Coomassie blue-stained lane of isolated radial spokes (from the sucrose gradient shown in panel b). The p₆₁ protein and several RSP components were identified by immunoblot analysis and/or by comparison with the electrophoretic analysis performed by (Yang et al., 2001).

b) Axonemes from the mutant oda1 were treated with 0.6 M NaCl to remove inner arm dyneins and the radial spokes subsequently extracted with 0.5 M KI. This extract was then sedimented in a 5-20% sucrose density gradient. Fractions were
electrophoresed in a 5-15% acrylamide gradient gel and either stained with Coomassie blue (upper panel) or blotted to nitrocellulose and probed with CT220 (middle panel) and the RSP3 antibody (lower panel). Most of the p61 and RSP3 proteins were found together in fractions 1-3. In contrast, the M₄0,000 band detected by antibody CT220 sedimented near the top of the gradient in fractions 11-14. NDKase activity of each fraction is shown in the lower panel, and precisely copurified with p61 near the bottom of the gradient and also with p40 towards the top of the gradient.

c) Radial spokes lacking the spoke head were extracted from pf17 axonemes and sedimented in a 5-20% sucrose gradient. Both p61 and RSP3 were present nearer to the top of the gradient in fractions 1-7; sedimentation of the M₄0,000 band was unaffected by the pf17 mutation. NDKase activity also was shifted up the gradient and again followed the p61 profile.

Figure 8 p61 Binds Calmodulin through both Ca²⁺-dependent and Ca²⁺-independent Mechanisms

Equimolar amounts of the full-length MBP-p61(7-586), the truncated MBP-p61(7-199), MBP-p61(7-424), MBP-p61(7-494) fusion proteins, and a MBP protein to which only the IQ2 region (p61 residues 424-494) was attached, were incubated with calmodulin-Sepharose beads in the presence of 2 mM Ca²⁺. Protein that did not bind was recovered following a brief centrifugation (lane marked flow through). Following several washes, protein bound in a Ca²⁺-dependent manner was eluted with buffer containing 2 mM EGTA (EGTA eluate). Any protein that remained associated through a Ca²⁺-independent interaction was obtained by incubating the beads in gel sample buffer (lane
marked beads). Samples were electrophoresed in an 8% acrylamide gel and stained with Coomassie blue. Maps illustrating the domain structure of the various constructs are shown at right.

Figure 9 Model for Ca\(^{2+}\)-dependent GTP Signaling through the Radial Spokes

The diagram illustrates the location of structures associated with a single flagellar doublet microtubule. Within the radial spoke stalk, RSP3 is located at the base and is thought to anchor cAMP-dependent protein kinase (PKA) resulting in phosphorylation of inner dynein arm proteins. The p61 protein and associated calmodulin (CaM) are also present in the stalk. Ca\(^{2+}\) binding results in activation of the p61 NDK module to generate GTP (or some other NTP) which subsequently could be used either by a GTP-binding switch protein, a specific GTPase or a guanylate cyclase. Intriguingly, the calmodulin-associated RSP2 protein, which contains a GAF domain that might potentially bind cGMP and act as a downstream target for p61-generated GTP, is also a component of the radial spoke (Yang and Sale, 2004) and is apparently located close to p61. The dynein regulatory complex (DRC) is located near the base of the radial spokes and inner arms.
Patel-King et al. Figure 1
Patel-King *et al.* Figure 3
Patel-King et al. Figure 6
Patel-King et al. Figure 7
Patel-King et al. Figure 8
Patel-King et al. Figure 9