Reggies/flotillins interact with Rab11a and SNX4 at the tubulo-vesicular recycling compartment and function in transferrin receptor and E-cadherin trafficking

Gonzalo P. Solis\(^{a,b,*}\), Nikola Hülsbusch\(^{a,*}\), Yvonne Radon\(^{a,*}\), Vladimir L. Katanaev\(^{b}\), Helmut Plattner\(^{a}\) and Claudia A.O. Stuermer\(^{a,1}\)

\(^{a}\)Department of Biology, University of Konstanz, 78467 Konstanz, Germany
\(^{b}\)Department of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland

*These authors contributed equally to this work.

1Address correspondence to: Gonzalo P. Solis (Gonzalo.Solis@unil.ch) and Claudia A.O. Stuermer (Claudia.Stuermer@uni-konstanz.de)

†Present address: Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany

The authors declare no conflict of interest.

Running Head: Reggie/flotillin function in recycling

Abbreviations: Ab, antibody; PM, plasma membrane; shRNA, short hairpin RNA; Tf-rhod, rhodamine-coupled transferrin; TfR, transferrin receptor

Abstract
The lipid raft proteins reggie-1 and -2 (flotillins) were implicated in membrane protein trafficking but exactly how has remained elusive. We discovered that reggie-1 and -2 associate with the Rab11a, SNX4 and EHD1 decorated tubulo-vesicular recycling compartment in HeLa cells and that reggie-1 directly interacts with Rab11a and SNX4. shRNA-mediated downregulation of reggie-1 (and -2) in HeLa cells reduced the association of Rab11a with tubular structures and impaired the recycling of the transferrin (Tf)-transferrin receptor (TfR) complex to the plasma membrane. Overexpression of constitutive-active Rab11a rescued TfR recycling in reggie-deficient HeLa cells. Likewise, in a Ca\(^{2+}\) switch assay in reggie-depleted A431 cells, internalized E-cadherin was not efficiently recycled to the plasma membrane upon Ca\(^{2+}\) repletion. However, E-cadherin recycling was rescued by overexpression of constitutive-active Rab11a or SNX4 in reggie-deficient A431 cells. This suggests that the function of reggie-1 in sorting and recycling occurs in association with Rab11a and SNX4. Interestingly, impaired recycling in reggie-deficient cells led to de novo E-cadherin biosynthesis and cell contact reformation, showing that cells have ways to compensate the loss of reggies. Together our results identify reggie-1 as a regulator of the Rab11a/SNX4-controlled sorting and recycling pathway which is -like reggies- evolutionarily conserved.

Introduction
Reggie-1 and reggie-2 (flotillin-2 and flotillin-1, respectively) are lipid raft proteins which are expressed in virtually every cell type and in organisms as distant as fly and man (Stuermer, 2010). While this may suggest that reggies subserve basic cellular functions, such roles have not
been clearly defined. Reggies form oligomers and clusters of <100 nm at the cytoplasmic face of the plasma membrane (PM) and at membranes of various types of vesicles (Stuernmer, 2010). They were implied in endocytosis of the GPI-anchored protein CD59 and claimed to constitute a specific clathrin-independent endocytic route (Glebov et al., 2006). However, this view has remained controversial (Stuernmer, 2010; Otto and Nichols, 2011), although it is now widely accepted that reggies are involved in cargo trafficking. For instance, A. Saltiel and colleagues have demonstrated in adipocytes a role of reggie-2 in the translocation of glucose transporter 4 (Glut4) from a perinuclear (reggie-positive (Fecchi et al., 2006)) store to the PM, a process involving the adapter protein CAP, the Cdc42-related GTPase TC10 (Baumann et al., 2000; Kioka et al., 2002; Chang et al., 2007) and the exocyst (Kawase et al., 2006). Reggies were later shown to participate in trafficking of the cholesterol transporter NPC1L1 (Ge et al., 2011) and the dopamine transporter DAT (Cremona et al., 2011), and to promote the clathrin-dependent uptake of the amyloid precursor protein (APP) (Schneider et al., 2008) and NPC1L1 (Ge et al., 2011). Interestingly, reggies were strikingly accumulated at cell-cell contact sites of many cells (Stuernmer et al., 2004; Solis et al., 2010) where they are co-localized with E-cadherin in epithelial cells (Málaga-Trillo et al., 2009; Solis et al., 2012). More recently, reggies were shown to be functionally involved in adherens junction (AJ) formation and dynamics in A431 epithelial cells. In these cells, reggie downregulation by specific shRNAs increased epidermal growth factor receptor signaling (by interfering with its uptake) and accelerated macropinocytosis (Solis et al., 2012), which has been recognized as the pathway responsible for junctional E-cadherin internalization in MCF7 cells (Bryant et al., 2007). Junctional E-cadherin, in turn, is subject to rapid turnover and recycling (Hong et al., 2010). This and the finding that internalized E-cadherin was apparently trafficked in reggie-decorated vesicles (Solis et al., 2012) suggested that reggie may function in E-cadherin, or generally in cargo recycling (Stuernmer, 2010). This hypothesis has received support from our work in neurons which fail to extend their axon and are unable to regenerate axons after optic nerve lesion in zebrafish when reggie is downregulated (Munderloh et al., 2009). Growth cone elongation and axon regeneration require the constant turnover and re-delivery of membrane and membrane proteins (Shao et al., 2002; Falcone et al., 2006; Stuernmer, 2010), a process that appears to be somehow regulated by reggie (Bodrikov et al., 2011; Koch et al., 2012).

To obtain a better understanding whether and how reggies contribute to membrane protein trafficking and recycling, we decided to examine the role of reggie in simpler model cells. We used A431 cells for the analysis how reggie might regulate E-cadherin trafficking and HeLa cells which can be easily transfected and are therefore commonly used to explore the intricate network controlling cargo transport through the endosomal system. Moreover, HeLa cells exhibit a tubulo-vesicular trafficking system supported by proteins with membrane-deforming properties such as EHD (eps15 homology domain) family members (Naslavsky and Caplan, 2011) and sorting nexins, SNX (Worby and Dixon, 2002; Cullen, 2008). SNX4, in particular, has been identified as participant in the sorting of the transferrin (Tf) receptor (TfR) away from lysosomal degradation and into the Rab11a recycling pathway (Traer et al., 2007). It has been proposed that tubules provide an expansion of the endomembrane compartments for extensive cargo sorting through the endosome network which is assisted by GTPases of the Rab, Ras and Rho families (Grant and Donaldson, 2009; Stenmark, 2009). Rab11a, for instance, defines the segment which receives cargo sorted away from degradation pathways and destined for recycling (Ullrich et al., 1996; Takahashi et al., 2012). The re-delivery of recycling cargo to the PM typically involves components of the exocyst. The exocyst binds Rab11a (Zhang et al., 2004; Wu et al., 2005) and
promotes together with the GTPases TC10 and RaLA the targeted recycling of specific cargo (Chen et al., 2006; Stuermer, 2010). TC10 and exo70 are known to interact with reggie (Baumann et al., 2000; Chang et al., 2007; Bodrikov et al., 2011) for re-insertion into the PM of Glut4 and N-cadherin, respectively. This information together with our presently new finding that reggies decorate a widely ramified tubulo-vesicular compartment indicative of sorting and recycling, led us to examine whether reggies interact with SNX4 and Rab11a and contribute to TIR recycling in HeLa cells. We also explored whether reggies might participate in E-cadherin recycling in connection with Rab11a and SNX4 in A431 cells. This was addressed by using the so-called Ca²⁺ switch assay (Chitaev and Troyanovsky, 1998; Pertz et al., 1999). We thus analyzed whether reggies - being evolutionarily conserved and present in basically every cell type - would constitute a new member of the equally well-conserved Rab11a/SNX4-mediated recycling route.

**Results**

**Reggies are associated with the tubulo-vesicular sorting and recycling system**

In our attempt to understand the contribution of reggie to the intracellular trafficking and recycling of membrane proteins (TIR in HeLa and E-cadherin in A431 cells), we transfected HeLa cells with reggie-1-EGFP or reggie-2-EGFP. Interestingly, expression of either reggie-1 or -2 led to the formation of prominent reggie-positive tubular structures which emerged from the perinuclear recycling compartment and reached into the vicinity of the PM (Figure 1, A and B). Such tubules were also apparent after immunostaining with a reggie-1-specific Ab consisting of conspicuous rows of orderly aligned puncta and centered on the recycling compartment (Figure 1C). Additionally, reggie-1-specific Abs labeled small and larger vesicles (the latter representing lysosomes (Stuermer et al., 2001)). In further experiments aiming at the characterization of the tubulo-vesicular system, we focused on reggie-1 and determined by immunostaining analyses that tubules decorated by reggie-1 (hereafter reggie-tubules) are not constituents of the ER, Golgi and mitochondrial endomembrane systems (Supplemental Figure S1, A-C). Reggie-tubules appeared highly dynamic with vesicles deriving from and merging with tubules, and moving towards and away from the PM (Figure 1D, and Supplemental Movie S1). Although less prominent, dynamic reggie-tubules were also observed in A431 cells (Supplemental Figure S1D, and Supplemental Movie S2).

As typical for tubulo-vesicular systems in earlier studies (Grant and Donaldson, 2009), the reggie-tubules extended along microtubules and collapsed when cells were exposed to the microtubule-polymerization blocker Nocodazole (Figure 1, E, F and I). Reggies also co-localized with filamentous actin (Langhorst et al., 2007). When cells were treated with CytochalasinD to inhibit actin polymerization, the number of cells with reggie-tubules increased but tubules appeared highly disorganized (Figure 1, G, H and I). On the other hand, the number of cells exhibiting reggie-tubules decreased significantly when cells were incubated with the cholesterol-sequestering drug Filipin (Figure 1I), which is consistent with the notion that reggies are preferentially associated with cholesterol-enriched membrane domains (Roitbak et al., 2005; Langhorst et al., 2008). Reggies possess a CRAC (cholesterol recognition amino acid consensus) motif in their head domain (also known as SPFH, stomatin, prohibitin, flotillin, HFLK/C, domain). The head domain and its acylation sites are required for the interaction of reggies with membranes (Neumann-Giesen et al., 2004; Liu et al., 2005; Langhorst et al., 2008), whereas the alpha-helical coiled-coil tail (flotillin) domain promotes homo- and hetero-oligomerization (Solis et al., 2007).
To evaluate which domain is responsible for the localization at tubules, we co-transfected reggie-1 full-length and its membrane-associated deletion constructs (Figure 2A) (Langhorst et al., 2008). The construct containing the N-terminal SPFH domain (R1NT) and the one comprising the C-terminal tail (R1MCT) domain localized at reggie-tubules (Figure 2, B and C), whereas the construct lacking both regions (R1WTSH) but including the first 30 amino acids with the acylation sites of reggie-1 did not (Figure 2D). The R1MCT construct comprising the tail domain might localize to reggie-tubules by its interaction with the reggie-1 full-length protein. Therefore, we generated shR1 HeLa cells to express the mutant proteins in reggie-depleted cells (Figure 2E). In shR1 cells, the R1MCT deletion construct (as well as the R1WTSH mutant) no longer bound to tubules (Figure 2F). However, the R1NT construct still exhibited tubular structures in reggie-depleted cells (Figure 2F). These data indicate that the head domain is necessary for the association of reggie-1 with tubules, whereas the tail domain is dispensable. Interestingly, the R1NT mutant was absent from large intracellular vesicles decorated by reggie-1 (Figure 2B), i.e., lysosomes (Langhorst et al., 2008), suggesting that the tail domain might be necessary for lysosomal targeting.

Tubulo-vesicular systems often serve in membrane protein sorting and recycling (Grant and Donaldson, 2009). To determine if reggie-1 is a component of the recycling system, we co-transfected HeLa cells with reggie-1 and Rab11a. Both proteins strongly co-localized at the perinuclear region as well as at tubular structures emerging from this area (Figure 3A). In agreement with these observations reggie-1 and Rab11a (identified by double immunogold staining and EM analysis) were detected together at elongated tubular structures adjacent to the PM of HeLa and PC12 cells (Supplemental Figure S2, A-D). Both were also co-clustered at tubular structures extending along parallel bundles of, most likely, microtubules (Supplemental Figure S2B).

In addition to Rab11a, numerous small GTPases have been reported to reside at the recycling compartment (Grant and Donaldson, 2009). Accordingly, the reggie-positive perinuclear compartment and tubules also contained the GTPases associated with recycling: Arf6 and Rab8a (Supplemental Figure S3, A and B), as well as EHD1 and SNX4 (Figure 3, B and C), but not the retromer-component SNX1 (Supplemental Figure S3C). No significant co-localization with the early endosomal markers EEA1 and Rab4a was observed (Supplemental Figure S3, D and E). The exocyst complex is known to participate in membrane protein targeting from the recycling compartment to the PM (Grant and Donaldson, 2009). Consequently, we found that reggie-tubules co-localized with the exocyst subunit Exo70, whereas Sec5 was associated with the reggie-positive perinuclear compartment (Supplemental Figure S4, A and B). Reggie-tubules also co-localized with the exocyst-regulating GTPases TC10 and RaLa (Figure 3D, and Supplemental Figure S4C). This connects reggie-tubules to reggie’s role in Glut4 and N-cadherin trafficking to the PM, which was shown to require TC10 and the exocyst (Baumann et al., 2000; Chen et al., 2006; Chang et al., 2007; Bodrikov et al., 2011).

To examine whether reggie-1 might interact with components of the tubulo-vesicular system specifically involved in recycling, co-immunoprecipitation experiments were performed on transfected HeLa cells. As shown in Figure 3E, immunoprecipitation experiments with reggie-1-HA specifically co-precipitated EGFP-tagged Rab11a and SNX4 but not EHD1, Rab4a, Rab8a, SNX1 and Arf6-ECFP. To analyze if reggie-1 directly interacts with Rab11a and SNX4, we carried out in vitro pull-down assays using recombinant proteins. Since the SPFH domain of reggie-1 seems to be responsible for its localization in tubules (Figure 2F), we generated a GST-fusion construct (GST-R1NT) of this domain excluding the hydrophobic stretch within the first
30 amino acids to avoid unspecific binding. Notably, GST-R1NT was able to pull-down recombinant His$_6$-tagged SNX4 and Rab11a independently of its loading with GDP or GTP$_\gamma$S (Figure 3F,G). Additionally, no competition was observed for the interaction of GST-R1NT with Rab11a and SNX4 (Figure 3G). Since a GST-Rab11a construct was unable to pull-down His$_6$-SNX4 (Supplemental Figure S4D), these results indicate that reggie-1 might be necessary for the coordination of SNX4 and Rab11a in the recycling compartment.

Altogether, these data identify reggie-1 as a component of the tubulo-vesicular system involved in the regulation of recycling.

To evaluate if reggie-1 controls the formation of the tubular recycling system, we analyzed the cellular distribution of Rab11a and EHD1 after depletion of reggie-1. Downregulation of reggie-1 causes the proteasomal degradation of reggie-2 (Solis et al., 2007) so that cells have reduced levels of both reggies (Figure 2E). Rab11a in tubules was significantly reduced in shR1 cells as well as in HeLa cells treated with a specific siRNA against reggie-1 compared to shLuc and control siRNA-transfected cells (Figure 4, A and B, and Supplemental Figure S5, A-C). Conversely, the pattern of EHD1-decorated tubules was normal in both shR1 and shLuc cells (Supplemental Figure S5D). Thus, although reggie-1 seems to regulate Rab11a localization in tubules, it is most probably not required for the formation of tubules per se. To study whether the presence of Rab11a in tubules depends on its activity, we analyzed the subcellular localization of the constitutive active (CA) and the dominant negative (DN) mutants of Rab11a (Q70L and N25S, respectively) (Ullrich et al., 1996). The Rab11a-CA mutant was clearly localized at tubules in shR1 and shLuc control cells (Figure 4C), but the Rab11a-DN construct was not (Figure 4D). The absence of Rab11a-DN from tubules points to a relation between Rab11a localization and activity.

Taken together, our present data show that reggie-1 is a component of the tubulo-vesicular recycling system and it might be involved in Rab11a activation during recycling.

The role of reggie-1 in transferrin receptor (TfR) recycling

To determine whether reggie-1 is indeed involved in cargo recycling, we analyzed the trafficking of rhodamine-labeled transferrin (Tf-rhod) in reggie-1-EGFP expressing HeLa cells. No apparent co-localization between Tf-rhod and reggie-1-positive perinuclear structures was observed after 5 min of incubation (Figure 4E), suggesting that reggie-1 is not involved in Tf endocytosis. In a pulse-chase experiment, HeLa cells were incubated for 5 min with Tf-rhod (pulse), washed and left for 10 min (chase) to allow Tf trafficking to the recycling compartment. As expected, Tf-rhod accumulated at the reggie-1-positive perinuclear recycling compartment (Figure 4F). Accordingly, quantification of the Pearson’s Correlation Coefficient revealed a two-fold increase in the co-localization of Tf-rhod and reggie-1-EGFP after 10 min chase (0.21 ± 0.02 for 5 min pulse and 0.42 ± 0.04 for 5 min pulse-10 min chase; p<0.001). Moreover, the TfR also accumulated at the perinuclear compartment in a similar pulse-chase experiment and co-localized with endogenous reggie-1 (Supplemental Figure S5E), suggesting that reggies may be involved in TfR recycling. How reggies affect Tf trafficking was examined using the pulse-chase method in shR1 cells. The amount and distribution of incorporated Tf-rhod did not differ between shR1, shLuc and untransfected HeLa cells after 5 min pulse (Figure 5, A and B). After 10 min chase, cells showed similar accumulation of Tf-rhod at the perinuclear compartment (Figure 5A), excluding a major role of reggies in the endocytosis of Tf-rhod and its transport from early endosomes to the recycling compartment. Importantly, however, the perinuclear accumulation of Tf-rhod increased roughly 40% in shR1 cells after 20 min chase compared to shLuc and untransfected HeLa cells (Figure 5, A and C). Accordingly, immunostainings also...
revealed an increased accumulation of the TfR at the perinuclear compartment in shR1 cells after 20 min chase (Supplemental Figure S5, F and G). Therefore, absence of reggies seems to impair TfR recycling. Biochemical analysis of pulse-chase experiments using biotinylated Tf confirmed that downregulation of reggies did not affect Tf endocytosis, but significantly delayed its recycling after 20 min chase (Figure 5D). The specificity of this phenotype was supported by a rescue experiment in which the shR1 cells were transfected with a shRNA-resistant reggie-1 construct (Solis et al., 2007). After 20 min chase, the Tf-rhod accumulation at the perinuclear region was reduced to the normal level in cells in which reggie-1 was re-introduced (Figure 5, E and H), but not in untransfected shR1 cells.

Further biochemical characterization of reggie-deprived cells revealed that the levels of Rab11a and SNX4 were unchanged in shR1 cells compared to untreated HeLa and control shLuc cells (Figure 2E). However, the total level of TfR was significantly reduced in shR1 cells compared to controls (Figure 2E). Tf uptake was not affected in shR1 cells (Figure 5, A, B and D), nor was the cell surface expression of TfR diminished in shR1 cells as shown in a biotinylation assay (Figure 2E). Thus, the reduction of TfR in reggie-depleted cells is likely caused by mis-sorting of the endocytosed receptor into the lysosomal degradation pathway, as reported following downregulation of SNX4 (Traer et al., 2007). In agreement with this view, shR1 cells showed a striking co-localization of Tf-rhod with the lysosomal marker Lamp-2 after 20 min chase, which is rarely observed in shLuc control cells (Supplemental Figure S5H). Additionally, the total protein level of TfR was restored in shR1 cells when lysosomal degradation was blocked by chloroquine (Figure 2E).

If downregulation of reggie-1 would indeed affect the activation of Rab11a, the reduction of Tf recycling should be rescued by forced Rab11a activation in shR1 cells. Therefore, we expressed the Rab11a-CA mutant in shR1 cells and analyzed Tf recycling in pulse-chase experiments. The level of incorporated Tf-rhod after 5 min pulse remained unaffected by the Rab11a-CA construct in shR1 cells (Figure 5F). After 20 min chase, the perinuclear accumulation of Tf-rhod was significantly reduced in those cells that expressed Rab11a-CA, but not in the untransfected shR1 cells (Figure 5, F and H). Thus, the CA mutant of Rab11a was able to rescue the recycling defects induced by reggie-1 downregulation. Conversely, the Rab11a-DN and Rab8a-CA mutants were unable to rescue this phenotype (Figure 5H). Moreover, the defect in Tf recycling was partially mimicked in control shLuc cells by the expression of the Rab11a-DN mutant, but not by the CA constructs of Rab11a and Rab8a (Figure 5, G and I). However, expression of Rab11a-DN in shLuc cells seemed to reduce Tf-rhod uptake and its accumulation after 20 min chase was observed not only at the perinuclear region, but also at peripheral areas of transfected cells (Figure 5G) (Takahashi et al., 2012).

Altogether, our data indicate that reggies might regulate TfR sorting and recycling by coordinating the activity of Rab11a and SNX4.

**Reggie-1 regulates E-cadherin recycling in A431 cells**

We have recently shown that reggies are involved in E-cadherin-mediated cell adhesion and adherens junction dynamics (Solis et al., 2012). We also demonstrated that a substantial fraction of E-cadherin is trafficked in reggie-decorated vesicles and tubules at the level of adherens junctions (Solis et al., 2012), suggesting that reggies regulate aspects of E-cadherin transport. To determine whether E-cadherin recycling to the PM occurs in conjunction with the tubulo-vesicular system discussed above, we co-expressed reggie-1-mRFP and E-cadherin-EGFP and followed protein trafficking by live imaging. We confirmed that E-cadherin was localized to the reggie-decorated tubulo-vesicular system and that both proteins traffic in tubules (in a Ca^{2+}}
switch experiment, detailed below) (Supplemental Figure S6A, and Supplemental Movie S3). To ascertain that tubules are no artifacts of reggie-1 overexpression, we performed immunostainings to visualize the distribution of the endogenous proteins. Accordingly, E-cadherin co-localized with endogenous reggie-1 at the perinuclear compartment and in tubular structures (Supplemental Figure S6B), indicating that E-cadherin is recycled in association with reggie-1 in A431 cells.

To induce E-cadherin endocytosis and recycling, shLuc and shR1 A431 cells were subjected to chelation by EGTA in the Ca\(^{2+}\) switch experiment (causing E-cadherin internalization and loss of cell adhesion (Le et al., 1999)). After Ca\(^{2+}\) depletion, E-cadherin became clustered in the perinuclear compartment in both shLuc and shR1 cells (Figure 6A) and partially co-localized with Rab11a and TfR (Supplemental Figure S6C), indicating that internalized E-cadherin accumulates at the recycling compartment in A431 cells. However, perinuclear E-cadherin also co-localized with the lysosomal marker Lamp-2 (Supplemental Figure S6C), suggesting that a fraction of E-cadherin undergoes degradation once it is endocytosed (see below). We also confirmed by using a blocker of dynamin (MiTMAB) that the perinuclear accumulation resulted from E-cadherin endocytosis via the classical clathrin- and dynamin-dependent uptake pathways (Le et al., 1999) (Supplemental Figure S6D). Perinuclear E-cadherin accumulation was still observed in shLuc and shR1 cells at 15 min after Ca\(^{2+}\) replenishment (Figure 6A). After 30 and 60 min, however, E-cadherin accumulation disappeared from the majority of the shLuc control cells but remained in the majority of the shR1 cells (Figure 6, A and C). This was quantified by counting cells with perinuclear E-cadherin accumulation ≥ 6 \(\mu\)m\(^2\) after 30 min Ca\(^{2+}\) replenishment (which is the average size of endocytic E-cadherin clusters) (Figure 6C). The increased number of cells retaining E-cadherin clusters indicates that reggie-depleted A431 cells have defects in recycling E-cadherin to the PM.

As in HeLa cells, the recycling defects observed in A431 cells were not caused by reduced levels of Rab11a or SNX4 in shR1 cells (Supplemental Figure S6E). To determine whether reggie controls Rab11a activity during E-cadherin recycling to the same extent as during TfR recycling, shR1 A431 cells were transfected with Rab11a-CA and subjected to the Ca\(^{2+}\) switch experiment. The majority of the shR1 cells with Rab11a-CA lost the abnormal perinuclear E-cadherin accumulation, indicating that Rab11a-CA was able to rescue the blocked recycling (Figure 7, A and B). Expression of Rab11a-DN, by contrast, mimicked the reggie knockdown phenotype in control shLuc cells (Figure 7, A and B). The disappearance of the E-cadherin accumulation in shR1 cells (rescue) was also achieved by overexpression of SNX4 but not by EHD1 or the Rab8a-CA mutant (Figure 7, A and B). These results suggest that reggie-1 participates in E-cadherin recycling and operates in pathways that co-depend on Rab11a and SNX4.

In the Ca\(^{2+}\) switch experiment we noted that shR1 A431 cells reformed E-cadherin-labeled contacts almost to the same extent as their shLuc counterparts (Figure 6A) and despite the persisting intracellular accumulation and thus impaired E-cadherin recycling. When protein levels were examined in Western blot analyses, the E-cadherin concentration was equal in shR1 and shLuc cells at 0 min, but was significantly increased in shR1 cells after 60 min Ca\(^{2+}\) replenishment (Figure 6E). To analyze whether this effect results from de novo synthesis of E-cadherin, the cells were treated with cycloheximide (blocking protein synthesis) and examined again at 0 and 60 min in the Ca\(^{2+}\) switch experiment. Under this condition E-cadherin expression was equal in shLuc and shR1 cells at 60 min (Figure 6F), indicating that the increase in E-cadherin in shR1 cells results from upregulation of its de novo synthesis. However, both shR1 and shLuc cells showed a decrease of E-cadherin at 60 min compared to the 0 min time point.
probably due to E-cadherin degradation (Figure 6F) (Shen et al., 2008). Notably, treatment of cells with cycloheximide did not reduce the number of cells with increased perinuclear E-cadherin accumulation and shR1 cells showed a delay in the formation of E-cadherin dependent cell contacts (Figure 6, B and D), indicating that reggie-depletion impairs E-cadherin recycling to the PM and thus cell contact formation.

Altogether, our findings identify reggie-1 as a component of the tubulo-vesicular recycling system and a regulator of TfR and E-cadherin recycling via its interaction with Rab11a and SNX4.

Discussion

Our present results identify reggie-1 as a binding partner of Rab11a and SNX4 and show that reggies function as regulators of the Rab11a- and SNX4-mediated sorting and recycling of TfR in HeLa and of E-cadherin in A431 cells. This corresponds to the association of reggie-1 and -2 with the tubulo-vesicular recycling compartment decorated with Rab11a, SNX4 and EHD1 and several other GTPases required for cargo trafficking. The central role that reggie-1 plays in recycling was recognized in reggie-deficient HeLa cells which retained the TfR in a perinuclear compartment instead of re-delivering it to the PM. Cell transfection with Rab11a-CA rescued the blocked recycling in reggie-deficient cells so that the TfR returned to the PM. Likewise, in A431 cells reggie-1 turned out to be needed for the re-delivery of E-cadherin from the perinuclear Rab11a-positive compartment to the PM in the Ca²⁺ switch experiment. Again, Rab11a-CA as well as SNX4 overexpression rescued E-cadherin recycling. Together with the evidence that reggie-1 specifically binds and interacts with Rab11a and SNX4, our results imply that reggie-1 associates with a complex of Rab11a and SNX4 and coordinates their activities. As in previous studies, reggie downregulation had no significant effect on the largely clathrin- and dynamin-dependent endocytosis of either TfR or E-cadherin, nor did reggie co-localize to any significant extent with EEA1 and vesicles of early endocytosis (Langhorst et al., 2008; Schneider et al., 2008; Cremona et al., 2011; Solis et al., 2012) although some staining of Rab5a at reggie-tubules occurred. By promoting recycling, reggie-1 apparently contributes, together with Rab11a and SNX4 (Traer et al., 2007), to divert TfR from lysosomal degradation in HeLa cells, since TfR was markedly reduced in shR1 cells. Interestingly, A431 cells in the Ca²⁺ switch experiment responded to the impaired recycling caused by reggie downregulation with E-cadherin de novo synthesis to promote the reformation of cell contacts. Altogether, our results identify reggie-1 as a new and important regulator of membrane protein trafficking along the Rab11a- and SNX4-mediated sorting and recycling route.

The role of reggie in Rab11a- and SNX4-mediated recycling is almost certainly not confined to TfR and E-cadherin, as reggies were reported to affect aspects of trafficking of Glu4 (Baumann et al., 2000; Fecchi et al., 2006), DAT (Cremona et al., 2011), NPC1L1 (Ge et al., 2011), NMDA receptor (Swanwick et al., 2009), adhesion molecules (Hoehne et al., 2005; Swanwick et al., 2010; Bodrikov et al., 2011), Wnt and Hedgehog (Katanaev et al., 2008; Solis et al., 2013) and the TCR (Stuermer et al., 2004) in many different cell types and species. Whether the formation of a protein complex between reggie-1, SNX4 and Rab11a directly activates the GTPase or is involved in the trafficking of these molecules remain to be tested.

Our finding that the reggie proteins are constituents of the tubulo-vesicular system is consistent with their proposed role in the targeted delivery of membrane proteins such as guidance and growth factor receptors, adhesion and transporter proteins to specific sites of the PM like cell contacts, leading edge of migratory cells and growth cones (Stuermer, 2010). These represent regions with highly efficient recycling activities of membrane and associated proteins. It has
been recognized that this membrane protein turnover is absolutely required for cell migration and axon growth (Shao et al., 2002) and is likewise needed for adherens junction (Hong et al., 2010) and focal adhesion formation (Caswell et al., 2009). Membrane protein turnover – be it at cell-cell or cell-substrate contact sites or at the leading edge or growth cones – typically depends on Rab11a (Lock and Stow, 2005; Eva et al., 2010) and members of the SNX and EHD families (Shao et al., 2002; Worby and Dixon, 2002; Cullen, 2008; Naslavsky and Caplan, 2011). Thus, our present results can indirectly account for the earlier findings which identified reggies as crucial elements for growth cone elongation and axon regeneration (Munderloh et al., 2009; Bodrikov et al., 2011; Koch et al., 2012). In vertebrates, reggies are present in all cells analyzed so far, yet apparently they are more important in certain cell types (neurons) than in others, particularly when the polarized transport of specific cargo molecules is concerned.

The function of reggies in the targeted recycling of cargo appears to be evolutionary conserved. Reggio downregulation or misexpression causes defects in the deployment of specific proteins in species as distant as Drosophila and mammals (Hoehne et al., 2005; Katanaev et al., 2008), where Rab11a and SNX family members also have important roles. The striking degree of sequence identity between Drosophila and mammalian reggies (Rivera-Milla et al., 2006) further suggests that the domains for membrane binding and protein-protein interactions inherent to the head and tail domains, are conserved. Interestingly, our results show furthermore, that A431 cells compensate the loss of reggie by increasing E-cadherin biosynthesis. Only then are the cells able to re-establish proper contacts, a process of eminent significance for tissue integrity and prevention of metastasis (Gavard and Gutkind, 2008). This observation emphasizes the importance of reggies in cargo recycling and can explain why downregulation or even knock-out of reggies gives subtle or no apparent phenotypes (Ludwig et al., 2010; Banning et al., 2012; Berger et al., 2012). We suspect that cells activate compensatory mechanisms – such as de novo synthesis of E-cadherin – in the absence of reggie to guarantee the targeted delivery of important membrane proteins.

Cells can possess a sophisticated tubulo-vesicular recycling system equipped with coat proteins in which cargo proteins can be sorted away for the delivery to specific sites of the cell (Jovic et al., 2009). This group of cargo proteins includes E-cadherin (Grant and Donaldson, 2009) as well as Glut4 and β-integrins, both representing membrane proteins whose trafficking was suggested to be influenced by reggie (Fecchi et al., 2006; Schrock et al., 2009; Steurmer, 2010). The expansion of the sorting and recycling compartment into tubules is considered to promote sorting and depends on high packing density of proteins with membrane-deforming properties, such as members of the EHD and SNX families (van Weering et al., 2010; Naslavsky and Caplan, 2011). Reggies seem to represent a new type of coat protein. The analysis of reggie domains suggests that reggies may possess membrane-deforming properties on their own and, therefore, their overexpression would favor tubule formation. On the other hand, tubules persist in the absence of reggie, indicating that they are not absolutely required for tubule formation. Reggies cluster preferentially in cholesterol-rich domains and possess a CRAC motif in their head domain (Roitbak et al., 2005). The reggie association with tubules and the cholesterol depletion experiment which disrupts tubules, suggest that these endomembranes have a specific lipid raft composition which is favored by the reggie proteins (Morrow and Parton, 2005; Langhorst et al., 2008). Thus, reggies appear to create or demarcate membrane domains of specific lipid composition, probably like EHD1 and SNX4 which are associated with phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate (Jovic et al., 2009; Cullen, 2011).
Altogether, our results have shown that reggie-1 binds Rab11a and SNX4 and contributes to Rab11a- and SNX4-dependent sorting and recycling needed for the re-delivery of TfR and E-cadherin to the PM. This evidence together with published data (own and other groups) complies with the idea that reggies regulate recycling and targeted re-delivery of several (or even many) membrane proteins, implying that this activity might represent the function of reggie which had for so long remained ill-defined.

**Materials and Methods**

**Reagents and Antibodies**

Cell culture reagents were purchased from Gibco BRL. Monoclonal antibodies (mAbs) against reggie-1/flotillin-2 (ESA), flotillin-1, GM130, Rac1, E-cadherin and RaLA were from BD Biosciences, mAbs against HA and GFP from Roche, mAbs against CoxIV and PDI, and polyclonal antibody (pAb) against E-cadherin and EE1 from Cell Signaling, mAb against TfR and pAb against Rab11a from Invitrogen, pAb against reggie-1/flotillin-2 and mAb against biotin from Sigma-Aldrich. pAbs against Sec5, Exo70 and SNX4 were from Santa Cruz, mAb against RGS-His from Qiagen, pAbs against α-tubulin and GAPDH from Abcam. HRP-conjugated pAb against GST was from GE Healthcare and mAb against Lamp-2 was from the Developmental Studies Hybridoma Bank. Phalloidin-Alexa568, rhodamine-conjugated transferrin and biotinylated transferrin were from Invitrogen. Secondary Ab for immunostaining and Western blots were from Jackson ImmunoResearch.

**Plasmids**

The R1-HA, R1-EGFP, R1-EGFP rescue, R1-mRFP, R2-EGFP, R1NT-EGFP, R1MCT-EGFP and R1WTSH-EGFP constructs were described previously (Langhorst et al., 2007; Solis et al., 2007; Solis et al., 2012). E-cadherin-EGFP vector was generously provided by Vann Bennett (Duke University Medical Center, Durham, NC), EGFP-Rab4a by Marcí Scidmore (Cornell University, NY, USA), EGFP-SNX4 by Kirsten Sandvig (University of Oslo, Norway), EGFP-SNX1 and mCherry-SNX4 by Peter Cullen (University of Bristol, UK), EGFP-EHD1 by Juan S. Bonifacino (National Institutes of Health, MD, USA), HA-TC10 by Alan Saltiel (University of Michigan, MI, USA), EGFP-Rab8a WT and Q67L by Johan Peränen (University of Helsinki, Finland), EGFP-Rab11a Q70L and S25N mutants by Stephen Ferguson (The University of Western Ontario, Canada). Arf6-ECFP (11382) and EGFP-Rab11a WT (12674) were obtained from Addgene. mRFP-Rab11a mutants were obtained by replacing the EGFP ORF with the mRFP sequence derived from the pmRFP-C1 plasmid. Arf6-DsRed was cloned by replacing the ECFP ORF with the DsRed sequence from the pDsRed-monomer-N1 vector (Clontech). The reggie-1 head/SPFH domain (aa 31 to 183) was cloned into the pGEX-KG vector (Abdesselem et al., 2009) to produce a recombinant GST-fusion protein. Rab11a cDNA was cut from the EGFP-Rab11a plasmid and cloned into the vectors pGEX-4T-1 (GE Healthcare) and pQE30 (Qiagen) to generate GST- and His6-tagged constructs, respectively. His6-tagged SNX4 was generated by inserting the corresponding cDNA derived from the EGFP-SNX4 plasmid into the pQE30 vector. His6-tagged and GST-fusion proteins were expressed in E. coli BL21-CodonPlus (DE3)-RIPL (Stratagene).

**Cell cultures**

HeLa and A431 cells were cultured in MEM and DMEM, respectively, supplemented with 10% FCS, L-glutamine and penicillin/streptomycin. Vector transfections were carried out with FugeneHD (Roche) and siRNA transfections with Nanofectin siRNA transfection reagent (PAA, Linz, Austria) according to manufacturer’s instructions. AlexaFluor-546-labeled siRNA duplexes
against reggie-1 (R1.0) and firefly luciferase (GL2) were obtained from Qiagen using previously described target sequences (Solis et al., 2007). Stably transfected HeLa cells were generated using shRNA plasmids previously reported (Solis et al., 2012) and by selection in normal media supplemented with 10 μg/ml puromycin. shRNA-stably transfected A431 cells were previously described (Solis et al., 2012).

Immunofluorescence and microscopy
HeLa and A431 cells were washed and PFA-fixed at 37°C for better preservation of tubular structures. Staining of A431 and HeLa cells were done as previously described (Langhorst et al., 2008; Solis et al., 2012). Cells were analyzed with an α-Plan-Apochromat 63x/1.4 oil or an Apochromat 40x/1.2 water objective at a confocal microscope (LSM510 Meta) equipped with an AxioCamHRm (all Zeiss).

Toxin treatments
HeLa cells, grown on poly-L-lysine (pLys)-coated coverslips, were transfected with R1-EGFP for 48 h and incubated for 30 min at 37°C in MEM supplemented with 10 μM CytochalasinD, 10 μM Nocodazol, 10 μg/ml Filipin (all Calbiochem), or DMSO as control. After fixation and staining, roughly 600 transfected cells per condition from 3 independent experiments were analyzed by counting R1-EGFP expressing cells with tubular structures. The total amount of co-transfected cells was set to 100% (one-way ANOVA test for statistical analysis).

Quantification of Rab11a-tubules
For quantification of Rab11a-tubules after reggie-1 knockdown, HeLa cells were transfected with siRNA against reggie-1 or control GL2 for 48 h and then transfected with the EGFP-Rab11a vector for additional 24 h before fixation. Alternatively, shRNA-stably transfected HeLa cells were transfected with the EGFP-Rab11a vector on pLys-coated coverslips and grown for 24 h before fixation. Roughly 600 cells per condition from 3 independent experiments were analyzed by comparing cells exhibiting or not Rab11a-positive tubules. The total amount of transfected cells was set to 100% (paired t-test for statistical analysis).

Biochemical and biotinylation analyses
HeLa and A431 cells were lysed with ice-cold lysis buffer (20 mMTris-HCl, pH 7.5, 100 mMNaCl, 5 mM MgCl2, 2 mM EDTA, 1% Triton X-100, 10% glycerin) supplemented with protease and phosphatase inhibitor cocktails (Thermo Scientific). Extracts were cleared by centrifugation and boiled at 95°C for 5 min or used for co-immunoprecipitation analyses. Briefly, lysates were incubated with 1 μg Ab against HA-epitope for 1 h at 4°C. Then, 20 μl of protein-G agarose (Roche) was added and incubated overnight at 4°C. The beads were washed and prepared for SDS-PAGE and Western blots. TFR protein levels were analyzed from total cell extracts of parental and shRNA stably-transfected HeLa cells non-treated or treated overnight with 50 μM chloroquine (Sigma-Aldrich) in normal medium to block lysosomal degradation. Quantification of blots was done using ImageJ (National Institutes of Health, Bethesda, MD) from 4 independent experiments. One-way ANOVA or paired t-test was used for statistical analysis. Biotinylation of cell surface proteins was carried out as described previously (Solis et al., 2012).

Transferrin uptake and pulse-chase assays
The transferrin uptake and pulse-chase experiments were carried out as described previously (Jovic et al., 2009). Briefly, HeLa cells were starved in MEM lacking serum and supplemented with 0.5% BSA (MEM-BSA) for 1 h at 37°C. Cells were incubated with MEM-BSA supplemented with 2 μg/ml Tf-rhod or Tf-biotin for the time indicated in the corresponding figures. Then, cells were either fixed as described above or subjected to a chase of 10 or 20 min.
in complete MEM at 37°C followed by fixation. Fluorescence mean intensities of total and perinuclear accumulation of Tf-rhod were scored from roughly 200 cells per group (3 independent experiments) using the LSM Image Browser software (Zeiss) for uptake and pulse-chase experiments (one-way ANOVA test for statistical analysis). Co-localization of R1-EGFP and Tf-rhod was quantified from confocal images by the Pearson’s Correlation Coefficient using the JACoP plugin for ImageJ (Bolte and Cordelieres, 2006). The thresholds were determined automatically using Costes automatic thresholding and the Pearson’s Correlation Coefficient was scored from at least 100 cells per condition from two independent experiments (paired t-test for statistical analysis). Co-localization of R1-EGFP and Tf-rhod was quantified from confocal images by the Pearson's Correlation Coefficient using the JACoP plugin for ImageJ (Bolte and Cordelieres, 2006). The thresholds were determined automatically using Costes automatic thresholding and the Pearson’s Correlation Coefficient was scored from at least 100 cells per condition from two independent experiments (paired t-test for statistical analysis). For immunoblotting, HeLa cells were starved for 1 h in 0.2% MEM-BSA, followed by a 10 min pulse with 20 µg/ml Tf-biotin in MEM-BSA. After several washing steps with acidic buffer (0.2 M acetic acid, 0.5 M NaCl) to remove surface bound Tf, cells were either lysed immediately or subjected to a chase for 20 min in complete MEM at 37°C and then lysed and prepared for SDS-PAGE and Western blots using Abs against biotin and α-tubulin as control. Quantification of blots was done from 4 independent experiments (paired t-test for statistical analysis).

Pull-down of recombinant proteins

GST-fusion proteins were isolated from bacteria cell extracts using Glutathione Sepharose 4B beads (GE Healthcare) according to manufacturer’s instructions. GST-fusion proteins immobilized to Glutathione Sepharose beads were used to pull down His₆-tagged proteins. Briefly, bacteria extracts containing His₆-tagged Rab11a were incubated with 1 mM GDP or 100 µM GTPγS in 50 mM Hepes pH 7.4 supplemented with 150 mM NaCl and 10 mM MgCl₂ for 1 h at room temperature to allow guanine nucleotide loading. Equal volumes of GDP- or GTPγS-loaded Rab11a extracts and/or extracts containing His₆-tagged SNX4 were applied to GST-coupled beads and incubated for 3 h at 4°C. Beads were repeatedly washed and bound proteins were eluted with 40 mM reduced Glutathione in 50 mM Tris-HCl pH 8.0 and 150 mM NaCl. Samples were prepared for SDS-PAGE and Western blots were carried out using anti-GST and anti-RGS-His Abs.

Calcium switch experiments

A431 cells were grown to approximately 60 % confluency on pLys-coated coverslips for immunostaining or on normal cell culture plates for immunoblotting. Cells were treated with growth medium without serum supplemented with 4 mM EGTA for 3 h, followed by several washing steps and addition of normal growth medium for the indicated time points. For the analysis of perinuclear accumulation of E-cadherin, the proportion of cells containing E-cadherin-labeled perinuclear clusters ≥ 6 µm² was counted from LSM-pictures using the Axiovision 4.8 software (Zeiss). When indicated, 10 µM of cycloheximide was added 1.5 h before fixation or lysis. The dynamin-2 blocker MiTMAB (Calbiochem) was added at 20 µM during Ca²⁺ chelation and recovery. Quantification of immunostainings was done from 100-200 cells per condition (3-4 independent experiments) and blots were measured from 3 independent experiments (paired t-test for statistical analysis).

Live cell imaging

HeLa and A431 cells were transfected for 48 h on pLys-coated coverslips, recorded with the Colibri imaging system (470 nm and 555 nm) and the α-Plan Fluar 100x/1.45 objective at the Axiovert 200M equipped with an AxioCamHRm (Zeiss). Cells were maintained in MEM and
DMEM, respectively, at 37°C, 5% CO₂ and controlled humidity. Images were acquired with 100% LED power every 100 or 1000 msec for 1-5 min and analyzed using Axiovision 4.8.

Electron microscopy (EM) analyses

HeLa cells after R1-EGFP transfection and normal PC12 cells were processed for post-embedding immuno-EM gold labeling avoiding antigen redistribution as previously described (Langhorst et al. 2008). Reggie-1 was labeled with the mAb ESA and Rab11a with a pAb. Antibody labeling was visualized by proteinA-gold conjugates with a 5 nm gold tag (pA-Au5nm) and mAb labeling with goat anti-mouse F(ab)2-gold conjugates with 10 nm gold (F[ab]2-Au10nm). This combination excludes cross-reactive gold labeling. Specifically pA-gold binds only to the Fc-region of pAb, but cannot bind to F(ab)2. Conversely, the F(ab)2-gold conjugate cannot bind to the pAb used or to pA.

References


Figure 1. Characterization of reggie-tubules in HeLa cells. (A-C) Confocal microscopy of HeLa cells shows reggie-decorated tubules after expression of either reggie-1-EGFP (R1-EGFP; A) or reggie-2-EGFP (R2-EGFP; B) emanating from the perinuclear recycling compartment (arrowheads). Immunostaining of endogenous reggie-1 (R1; C) shows its localization at tubular structures and vesicles. Boxed area indicates adjacent enlargement. (D) Real time images of HeLa cells expressing R1-EGFP were recorded for 2 min. In the first time lapse recording (I; boxed region in left panel), a vesicle emerges from the end of a reggie-tubule and moves towards the PM (arrows). The second time lapse recording (II; boxed region in left panel) shows the
elongation of a reggie-tubule towards the PM (arrows). (E-H) R1-EGFP-decorated tubules in HeLa cells partially co-localize with the α-tubulin microtubules (α-tub; E) and the F-actin cytoskeleton (G). Exposure to Nocodazole (F) or CytochalasinD (H) caused collapse and abnormal number and organization of reggie-tubules, respectively. Boxed areas enlarged in inserts. (I) Quantification of DMSO (control), Nocodazole (Noco), CytochalasinD (CytD) and Filipin effects on reggie-tubule formation in HeLa cells (n=3, **p<0.01, ***p<0.001, one-way ANOVA, error bars: SEM). Scale bars: 10 μm.
Figure 2. Reggie-1 head (SPFH) domain is necessary for its localization at tubules in HeLa cells. (A) Schematic representation of the C-terminal EGFP-tagged reggie-1 constructs used in this study. Reggie-1 full-length (R1) and its membrane-associated deletion constructs lacking the tail (flotillin) domain (R1NT), the head domain (R1MCT) or both domains (R1WTSH) are shown. The EGFP tags are depicted as green ovals. (B-D) Confocal images of HeLa cells expressing wild-type reggie-1-mRFP (R1-mRFP) and reggie-1 deletion mutants revealed that R1NT-EGFP (B) and R1MCT-EGFP (C) decorate reggie-tubules, whereas the R1WTSH-EGFP (D) construct was not observed at tubules. Boxed areas enlarged in inserts. (E) Expression levels of reggie-1 (R1), reggie-2 (R2), Rab11a, SNX4, TīR and GAPDH as loading control were analyzed by Western blots (WB) from extracts of shRNA-stably transfected and untransfected HeLa cells. A shRNA against reggie-1 (shR1) strongly reduced reggie-1 and reggie-2 expression compared to control transfected shRNA (shLuc) and HeLa cells, while no effects were observed on the levels of Rab11a and SNX4. Biotinylation analysis showed that TīR surface expression was not
affected in shR1 cells. Total TfR expression level was significantly reduced in shR1 cells compared to shLuc and HeLa cells. This effect was rescued by blocking lysosomal degradation with 50 μM chloroquine (n=4, **p<0.01, one-way ANOVA, mean±SEM). (F) Expression of the reggie-1 deletion constructs in shR1 HeLa cells revealed the formation of reggie-tubules by the construct containing the head domain (R1NT-EGFP). The reggie-1 deletion mutants lacking this domain (R1MCT and R1WTSH) were not observed at tubules. Scale bars: 10 μm.
Figure 3. Reggie-tubules belong to the recycling compartment. (A) Reggie-1-HA (R1-HA) and EGFP-Rab11a are co-localized at tubules as well as at the recycling compartment in the perinuclear region as seen in the merged image (right). (B-D) Reggie-1 also co-localized at tubules with EGFP-EHD1 (B) and EGFP-SNX4 (C) as well as with the exocyst-regulating GTPase TC10 (HA-TC10; D). Boxed areas enlarged in inserts. Scale bars: 10 μm. (E) Immunoprecipitation (IP) and Western blot (WB) analyses from co-transfected HeLa cell extracts show that reggie-1-HA (R1-HA) specifically interacts with EGFP-Rab11a and EGFP-SNX4 but not with EGFP-tagged Rab4a, Rab8a, SNX1, EHD1 and Arf6-ECFP. (F-G) Western blot analysis shows that recombinant His6-tagged Rab11a (His-Rab11a; F) loaded with GDP or GTPγS and SNX4 (His-SNX4; G) are efficiently pulled-down by a GST-fusion construct of the head/SPFH domain of reggie-1 (GST-R1NT), but not by GST used as control. No competition is observed for the interaction of GST-R1NT with His6-tagged Rab11a and SNX4 (G).
**Figure 4.** Reggie-1 co-localizes with internalized Tf-rhod at the recycling compartment. (A) The localization of Rab11a (EGFP-Rab11a) at tubules is significantly reduced in reggie-depleted (shR1) cells compared to controls (shLuc). (B) Quantification of the effect of reggie-1 downregulation on Rab11a-tubule formation in HeLa cells (n=3, ***p<0.001, paired t-test, error bars: SEM). (C,D) shR1 HeLa cells showed that the constitutive active mutant of Rab11a (EGFP-Rab11a-CA; C) localizes at tubules, whereas its dominant negative variant (EGFP-Rab11a-DN; D) is absent from tubules. (E,F) Tf-rhod containing endosomes after 5 min pulse do not significantly co-localize with reggie-1-labeled (R1-EGFP) structures at the perinuclear compartment (E). However, Tf-rhod co-localization with reggie-1 increased at the perinuclear recycling compartment (arrowheads; F) after 5 min pulse followed by 10 min chase. Boxed areas magnified in right panels. Scale bars: 10 μm.
Figure 5. Downregulation of reggie-1 impairs Tf recycling in HeLa cells. (A) Wild type and shRNA-stably transfected HeLa cells were pulsed with Tf-rhod for 5 min and then chased for 10 and 20 min. Reggie-depleted (shR1) cells showed no defects in Tf-rhod uptake (5 min pulse) and transport from early endosomes to the recycling compartment (10 min chase) compared to control transfected (shLuc) and untransfected HeLa cells. After 20 min chase, however, the
accretion of Tf-rhod was retained at the perinuclear compartment in the majority of shR1 cells, but reduced in shLuc and HeLa cells. (B,C) Quantification of the effect of reggie-1 downregulation on Tf-rhod uptake (B) and recycling (C) in HeLa cells (n=3, **p<0.01, one-way ANOVA, error bars: SEM). (D) Western blot (WB) analysis of pulse-chase experiments in shLuc and shR1 cells using biotinylated Tf (Tf-biotin) confirmed that Tf recycling was delayed in reggie-depleted cells after 20 min chase. No significant difference was observed in Tf-biotin uptake upon reggie downregulation (n=4, **p<0.01, paired t-test, mean±SEM). α-tubulin (α-tub) was used as loading control. (E) Expression of a shRNA-resistant reggie-1 construct (R1-EGFP rescue) rescued the Tf-rhod recycling defects observed after 20 min chase in transfected (arrowheads) but not in untransfected shR1 cells. (F,G) Pulse-chase experiments were performed in shR1 (F) and control shLuc (G) cells expressing a Rab11a constitutive active (EGFP-Rab11a-CA) and dominant negative (EGFP-Rab11a-DN) mutant, respectively. While the Rab11a-CA construct was able to rescue the Tf-rhod recycling defects in shR1 cells without affecting its uptake (arrowheads; F), in shLuc cells the Rab11a-DN mutant impaired both Tf-rhod uptake and recycling (arrowheads; G). (H,I) Quantification of the Tf-rhod perinuclear accumulation from the pulse-chase experiments shown in (E-G). A constitutive active mutant of Rab8a (EGFP-Rab8a-CA) was not able to rescue or mimic the effects of reggie-depletion in shR1 or shLuc cells, respectively (n=3, **p<0.01, one-way ANOVA, error bars: SEM). Scale bars: 10 μm.
Figure 6. Downregulation of reggie-1 impairs E-cadherin recycling in A431 cells. (A,B) E-cadherin endocytosis and recycling were induced in shRNA-stably transfected A431 cells by incubation with EGTA for 3 h followed by a Ca$^{2+}$ recovery for 0, 15, 30 or 60 min in absence (A) or presence of cycloheximide (B). Depletion of Ca$^{2+}$ and E-cadherin internalization causes cells to give up cell-cell contacts (0 min). Ca$^{2+}$ repletion (15, 30 and 60 min) allows cell-cell contact reformation. Immunostaining using an E-cadherin (E-cad) antibody showed its strong perinuclear accumulation (arrowheads) at 0 and 15 min recovery in both cycloheximide-treated and non-treated reggie-depleted (shR1) and control (shLuc) A431 cells. However, the perinuclear E-cad accumulation was strongly reduced after 30 and 60 min recovery in shLuc cells, but maintained in the majority of shR1 cells independent of cycloheximide treatment (arrowheads). Incomplete formation of E-cadherin-mediated cell contacts during Ca$^{2+}$ recovery in cycloheximide-treated shR1 cells was evident (B). Scale bars: 10 μm. (C,D) Quantification of the effect of reggie-downregulation on E-cadherin recycling in normal (C) and cycloheximide-treated (D) A431 cells (n=3, *p<0.05, **p<0.01, paired t-test, error bars: SEM). (E,F) Expression levels of E-cadherin, reggie-1 (R1) and α-tubulin (α-tub) as loading control were analyzed by Western blots from extracts of shLuc and shR1 A431 cells in absence (E) or presence of cycloheximide (F). shLuc and shR1 A431 cells (control) showed similar E-cadherin expression levels, which were slightly reduced after Ca$^{2+}$ chelation (0 min) independently of cycloheximide treatment. After 60 min recovery, however, shR1 cells presented a significantly higher E-cadherin expression level than control shLuc cells (E). This effect was abolished upon cycloheximide treatment (F) (n=4, **p<0.01, paired t-test, mean±SEM).
Figure 7. Rab11a and SNX4 rescue defects in E-cadherin recycling in reggie-depleted A431 cells. (A) A Ca^{2+} switch experiment in reggie-downregulated (shR1) A431 cells revealed that the perinuclear E-cadherin (E-cad) accumulation was released in cells expressing the Rab11a constitutive active mutant (mRFP-Rab11a-CA) or SNX4 (mCherry-SNX4) after 30 min recovery. In a similar experiment, the E-cadherin recycling phenotype was mimicked in control shLuc A431 cells by the expression of the dominant negative mutant of Rab11a (mRFP-Rab11a-DN). Scale bars: 10 μm. (B) Quantification of the effects of SNX4 and the Rab11a-CA and -DN mutants on E-cadherin recycling in shLuc and shR1 A431 cells. Expression of EGFP-EHD1 (EHD1) or mRFP-Rab8a-CA mutant (Rab8a-CA) was not able to mimic or rescue this phenotype in shLuc or shR1 cells, respectively (n=4, **p<0.01, one-way ANOVA, error bars: SEM).