Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast

Daniel P. Miller¹, Hana Hall², Ryan Chaparian², Madison Mara¹, Alison Mueller¹, Mark C. Hall², and Katie B. Shannon¹

¹Department of Biological Sciences, Missouri S&T, Rolla, MO 65401
²Department of Biochemistry, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907

Running Title: Dephosphorylation of Iqg1 by Cdc14

Abbreviations: calponin homology domain (CHD), mitotic exit network (MEN), cyclin-dependent kinase (Cdk), fourteen early anaphase release (FEAR)

ABSTRACT

Cytokinesis separates cells by contraction of a ring composed of filamentous actin (F-actin) and type II myosin. Iqg1, an IQGAP family member, is an essential protein in Saccharomyces cerevisiae required for assembly and contraction of the actomyosin ring. Localization of F-actin to the ring occurs only after anaphase, and is mediated by the calponin homology domain (CHD) of Iqg1, but the regulatory mechanisms that temporally restrict actin ring assembly are not well defined. We tested the hypothesis that dephosphorylation of four perfect cyclin-dependent kinase (Cdk) sites flanking the CHD promotes actin ring formation using site-specific alanine mutants. Cells expressing the non-phosphorylatable iqg1-4A allele formed actin rings prior to

Supplemental Material can be found at: http://www.molbiolcell.org/content/suppl/2015/06/14/mbc.E14-12-1637v1.DC1
anaphase and exhibited defects in myosin contraction and cytokinesis. The Cdc14 phosphatase is required for normal cytokinesis and acts on specific Cdk phosphorylation sites. Overexpression of Cdc14 resulted in premature actin ring assembly, while inhibition of Cdc14 function prevented actin ring formation. Cdc14 associated with Iqg1, dependent on several CHD-flanking Cdk sites, and efficiently dephosphorylated these sites in vitro. Importantly, the iqg1-4A mutant rescued the inability of cdc14-1 cells to form actin rings. Our data support a model in which dephosphorylation of Cdk sites around the Iqg1 CHD by Cdc14 is both necessary and sufficient to promote actin ring formation. Temporal control of actin ring assembly by Cdk and Cdc14 may help ensure cytokinesis onset occurs after nuclear division is complete.

INTRODUCTION

Cytokinesis, the final step in cell division, divides the cytoplasm between two daughter cells. Precise temporal control is necessary to coordinate cytokinesis and mitosis so that proper chromosome segregation can be completed. Cytokinetic failure results in tetraploid cells, and there is evidence that tetraploidy is an intermediate state leading to chromosomal instability, aneuploidy, and tumorigenesis (Ganem et al., 2007; Storchova and Kuffer, 2008). In animal and fungal cells, cytokinesis is achieved by a ring composed of filamentous actin (F-actin) and non-muscle type II myosin (Fishkind and Wang, 1995; Satterwhite and Pollard, 1992). The actomyosin ring is a transient structure that is precisely positioned to bisect the elongating anaphase spindle, ensuring proper chromosome segregation (Pollard, 2010). In yeast, actomyosin ring contraction must be coordinated with septation, the process of adding new cell wall material between the dividing cells (Bi, 2001).
In budding yeast, both actomyosin ring assembly and contraction are cell cycle regulated. The type II myosin heavy chain, Myo1, forms a ring at the bud neck in G1 (Bi et al., 1998; Lippincott and Li, 1998b). Localization of F-actin and contraction of the ring occur after anaphase and require the essential protein Iqg1/Cyk1 (Epp and Chant, 1997; Lippincott and Li, 1998b; Lippincott et al., 2001). Iqg1 is a 173 kDa scaffolding protein homologous to mammalian IQGAPs. IQGAP family members are essential for actin-based processes such as phagocytosis, cell adhesion, migration, and cytokinesis (Shannon, 2012; White et al., 2012). Iqg1 shares with other IQGAPs multiple functional domains: an N-terminal Calponin Homology Domain (CHD), IQ repeats, a GTPase Related Domain (GRD), and a Ras-GAP C-terminus (RGCt) (Epp and Chant, 1997; Lippincott and Li, 1998a; Shannon, 2012). Iqg1 is recruited to the bud neck by the myosin regulatory light chain, Mlc1, via interactions with the IQ domains (Boyne et al., 2000; Shannon and Li, 2000). Iqg1 recruitment to the ring is restricted to mitosis even though Mlc1 localizes to the bud neck earlier in the cell cycle (Boyne et al., 2000; Shannon and Li, 2000). Iqg1 binds F-actin via the CHD and recruits F-actin to the bud neck during anaphase/telophase of mitosis, which completes actomyosin ring assembly (Shannon and Li, 1999). The C-terminus of Iqg1, containing both the GRD and RGCt domains, interacts with the GTPase Tem1 and is required for contraction of the actomyosin ring (Shannon and Li, 1999). Tem1 is part of the Mitotic Exit Network (MEN), and temperature sensitive alleles of Tem1 and other MEN proteins cause mitotic arrest in late anaphase prior to cytokinesis (Jaspersen et al., 1998; McCollum and Gould, 2001).

The MEN, a signaling cascade that leads to the full release and activity of the phosphatase Cdc14, regulates mitotic exit, cytokinesis, and septation in budding yeast (Bardin and Amon, 2001; Meitinger et al., 2012). The MEN brings about exit from mitosis by inactivating the
mitotic cyclin-dependent kinase 1 (Cdk1). Cdk1, or Cdc28-Clb2 in budding yeast, is inactivated during anaphase via two partially redundant methods: inhibition of its kinase activity by Sic1, and degradation of the mitotic cyclin Clb2 by the APC^{Cdh1} complex (Jaspersen et al., 1998; Visintin et al., 1998). Both Sic1 and Cdh1 become active once dephosphorylated by the MEN component Cdc14, leading to inhibition of Cdk1 activity (Visintin et al., 1998). When Cdk1 activity drops, MEN proteins Cdc15, Dbf2-Mob1, Dbf20-Mob1, and Cdc14 all accumulate to the bud neck by an unknown mechanism, where they are positioned to regulate cytokinesis and septation (Bembenek et al., 2005; Meitinger et al., 2012). Although Cdk1 must be inactivated in order for actomyosin ring assembly and contraction to occur, the MEN has a role in promoting cytokinesis in addition to Cdk1 inactivation (Meitinger et al., 2012; Sanchez-Diaz et al., 2012). Overexpression of <i>SIC1</i> bypasses mitotic arrest in most MEN mutants, but cytokinesis defects persist. In cells expressing temperature sensitive alleles of the MEN gene <i>MOB1</i> and overexpressing <i>SIC1</i>, the actomyosin ring could assemble, but not contract (Luca et al., 2001). Similarly, inducing Cdc14 release after Tem1 depletion led to formation of actin rings that did not contract (Lippincott et al., 2001), suggesting that the MEN regulates the timing of cytokinesis onset. Cdc14 can dephosphorylate the actin filament-nucleating formins Bni1 and Bnr1, which may affect the localization of the formins during cytokinesis, but whether this dephosphorylation affects actin ring assembly has not been shown (Bloom et al., 2011). Cdc14 and the MEN kinase Dbf2 also play a role in septum regulation by targeting the chitin synthase Chs2. Cdc14 dephosphorylates Chs2 during anaphase, allowing Chs2 to localize to the bud neck, while Dbf2 phosphorylates Chs2 during actomyosin ring contraction causing its dissociation from the bud neck (Chin et al., 2012; Meitinger et al., 2010; Oh et al., 2012). Inn1 is another target of Cdc14, and dephosphorylation of Inn1 by Cdc14 also helps to regulate septation.
either through association of Inn1 with Cyk3 or via activation of Chs2 (Kuilman et al., 2015; Palani et al., 2012). Altogether, the MEN has multiple targets that allow cell cycle coordination of mitotic exit, cytokinesis, and septation.

As Cdc14 is the most downstream protein in the MEN pathway, the regulation of Cdc14 activity is key in coordination of cell cycle events. Early in the cell cycle, Cdc14 is bound to Net1, which inactivates and sequesters it in the nucleolus (Shou et al., 1999; Visintin et al., 1999). Two distinct mechanisms then release it from the nucleolus in an active form during anaphase. The Cdc14 early anaphase release network (FEAR) first releases Cdc14 into the nucleoplasm at anaphase onset primarily to promote proper spindle function and chromosome segregation. After chromosome segregation is completed, the MEN triggers widespread release of Cdc14 to the cytoplasm (Queralt and Uhlmann, 2008; Uhlmann et al., 2011). Although many Cdc14 target proteins required for mitotic exit and other mitotic events are well characterized, a direct role for Cdc14 in regulating actomyosin ring assembly has not previously been described.

In the yeast *Candida albicans*, the Igq1 homolog is phosphorylated *in vitro* by the cyclin dependent kinase Cdk1. Mutation of fifteen minimal Cdk1 consensus sites (S/T-P) in Igq1 flanking the CHD resulted in premature assembly and delayed disassembly of the actomyosin ring, resulting in cytokinesis defects (Li et al., 2008). Budding yeast Igq1 is phosphorylated *in vivo* by Cdk1 (Holt et al., 2009), and a recent report demonstrated that loss of various combinations of N-terminal Cdk1 sites caused premature recruitment of Igq1 and actin filaments to the contractile ring (Naylor & Morgan, 2014). Although there are 20 minimal consensus Cdk sites (S/T-P) in budding yeast Igq1, only 4 match the strict Cdk consensus motif S/T-P-x-R/K, and these are all adjacent to the CHD near the Igq1 N-terminus. Recently, Cdc14 was shown to possess specificity for the phosphoserine subset of the perfect Cdk consensus sites, and three of
the CHD-flanking Cdk consensus sites also match the consensus for dephosphorylation by Cdc14 (Bremmer et al., 2012; Eissler et al., 2014). We hypothesized that dephosphorylation of these Cdk sites by Cdc14 is important for controlling Iqg1 function in cytokinesis. In this study we present genetic, cell biological, and biochemical evidence supporting this hypothesis, and demonstrate that dephosphorylation of Iqg1 by Cdc14 is required for normal assembly of Iqg1 and F-actin in the contractile ring, providing insight into the mechanism of temporal regulation of cytokinesis.

RESULTS

Effects of Iqg1 Phosphorylation Mutations on Cytokinesis

To test the hypothesis that the phosphorylation state of Iqg1 during the cell cycle is important for regulation of cytokinesis, we constructed two plasmids containing mutations of the four perfect consensus Cdk sites (S/TPxR/K, (Li et al., 2008) where x is any amino acid) that flank the CHD (Figure 1A). Using site-directed PCR mutagenesis, each serine or threonine was mutated to either alanine or glutamic acid. Two alleles were generated, \textit{iqg1-4A} with all four perfect Cdk sites mutated to alanine to prevent phosphorylation, and \textit{iqg1-4E} with all four amino acids mutated to glutamic acid to mimic phosphorylation. Both alleles were expressed using the endogenous \textit{IQG1} promoter and tagged at the 3’end with 13 copies of the myc epitope. Because it was uncertain if cells expressing only the mutant alleles would be viable, each plasmid was introduced into a yeast strain that contains the wild-type copy of \textit{IQG1} under the inducible \textit{GAL1} promoter. This allowed the cells to be grown while expressing the wild-type copy of \textit{IQG1}, and for the wild-type copy to be repressed in order to see the effects of the mutations expressed using \textit{IQG1} native promoter. As we have previously shown, the \textit{GAL1-IQG1} is repressed after growth in YPD and phenocopies the null \textit{IQG1} allele (Figure 1C, lane 3) (Lippincott and Li, 1998b;
Shannon and Li, 1999). Both mutant proteins were expressed at levels comparable to a similarly
tagged wild type Iqg1 protein (Figure 1C).

Cytokinesis defects in budding yeast cause a distinct phenotype where cells continue to divide
and re-bud despite failing to separate, producing chains of cells (Figure 1D). To determine if
mutation of the Cdk phosphorylation sites affected cytokinesis, we examined the morphology of
cells expressing the \textit{iqg1-4A} and \textit{iqg1-4E} alleles. For comparison, the wild-type copy of \textit{IQG1}
under the \textit{IQG1} promoter was also introduced into the strain with the wild-type copy of \textit{IQG1}
under the inducible \textit{GAL1} promoter. The three strains, \textit{IQG1 GAL1-IQG1}, \textit{iqg1-4A GAL1-IQG1},
and \textit{iqg1-4E GAL1-IQG1} were grown in YPGR to allow wild-type \textit{IQG1} expression from the
\textit{GAL1} promoter or YPD to repress \textit{GAL1-IQG1} for 5-7 hours before analysis. We have
previously shown that growth of the parental \textit{GAL1-IQG1} strain in YPD represses expression of
\textit{IQG1} (Lippincott and Li, 1998b; Shannon and Li, 1999). Two hundred cells per treatment group
were analyzed using light microscopy, and cells were scored as having the chain phenotype if
they possessed three or more cell bodies (Figure 1D, E). Control cells expressing \textit{IQG1} from the
endogenous promoter showed less than 10% of chained cells in all conditions (Figure 1E). Cells
expressing \textit{iqg1-4A} and wild-type \textit{IQG1} from the \textit{GAL1} promoter did not differ significantly
from control cells in YPGR, indicating that \textit{iqg1-4A} does not have a dominant negative effect
(Figure 1E). The cells expressing \textit{iqg1-4A} exhibited altered morphology when wild-type \textit{GAL1-IQG1}
was repressed in YPD, forming chains in 44% of cells, significantly different both from
controls expressing wild-type \textit{IQG1} from the endogenous promoter and from cells expressing
both \textit{iqg1-4A} and wild type \textit{IQG1} from the \textit{GAL1} promoter (p = 0.0002 and p = 0.018, Figure
1E). Since yeast cells have a cell wall it is possible this chain phenotype is caused by defects in
either septation or cytokinesis. To distinguish between the two possibilities zymolyase was used
to remove the cell wall (Lippincott and Li, 1998b). After zymolyase treatment cells expressing only iqg1-4A still exhibited chains with significantly higher frequency than controls (32% compared to 9.5% in IQG1 alone, p = 0.002, and 14% in iqg1-4A GAL1-IQG1 expressing cells, p = 0.02) (Figure 1E).

In the strain expressing iqg1-4E, defects in cytokinesis were high both in the presence and absence of wild-type IQG1 expressed from the GAL1 promoter, and with and without zymolyase (Figure 1D, E). In all cases, the percentage of chains in iqg1-4E cells was significantly higher than in control IQG1 cells under the same conditions (p ≤ 0.01). In addition to the high number of chains, the cell bodies in the chains were often elongated and appeared to be hyperpolarized (Figure 1C, right panel). Iqg1-4E, but not iqg1-4A, caused slower growth and smaller colonies on both plates with dextrose and plates with galactose and raffinose (Figure 1B). The reason for this is unknown, but it is possible that iqg1-4E is acting as a dominant negative, and therefore we did not further investigate the iqg1-4E allele.

Our results show that the iqg1-4A and iqg1-4E alleles affecting phosphorylation of Iqg1 cause a chain phenotype significantly above that of IQG1 control cells. Because the IQG1 mutant alleles were expressed from a plasmid rather than the endogenous locus, we integrated a copy of iqg1-4A into the chromosome as described in Materials and Methods. The cells with integrated iqg1-4A had a significantly higher percentage of chains than the parental strain (11% in control cells compared to 24% in iqg1-4A, p = 0.01 Supplemental Figure 1). Our results are similar to those found in Candida albicans, demonstrating that the regulation of cytokinesis by phosphorylation of IQG1 is conserved between these yeast species. These data demonstrate that mutation of the four perfect Cdk sites in Iqg1 compromises the cell’s ability to complete cytokinesis.
Mutations that Prevent Phosphorylation of the Iqg1 Cdk Sites Cause Actin Ring Formation Prior to Anaphase

In the yeast *Candida albicans*, mutation of 15 minimal Cdk1 consensus sites in Iqg1 to alanine resulted in premature assembly of the actomyosin ring and cytokinesis defects (Li et al., 2008). It has also recently been reported that mutation of 14 Cdk sites in budding yeast Iqg1 caused actin ring formation prior to anaphase (Naylor and Morgan, 2014). We tested specifically if the four perfect Cdk sites in Iqg1 flanking the actin-binding CHD domain were important for controlling the timing of actin recruitment to the ring. To do this, the timing of actin ring formation was examined in synchronous cell cultures. Assembly of the actomyosin ring is regulated during the cell cycle, with Iqg1 and F-actin localizing to the bud neck during anaphase (Lippincott and Li, 1998b; Lippincott et al., 2001). Cells were arrested in G1 using mating factor. After release from the G1 arrest, a time course was performed with a sample of cells fixed every 20 minutes up to 100 minutes. The cells were stained using antibodies, phalloidin, and DAPI to visualize Iqg1, F-actin, and DNA respectively. Images of over 100 cells were analyzed at each time point under each condition in triplicate for the presence of actin and Iqg1 rings (Figure 2). Experimental cells were cultured in YPD, to repress wild type *GAL1-IQG1*, leaving *iqg1-4A* as the sole source of Iqg1 (Shannon and Li, 1999). Cells expressing only *iqg1-4A* were compared to cells expressing *iqg1-4A* and *GAL1-IQG1* (the same strain grown in YPGR), as well as to control cells with *IQG1* under the endogenous promoter in YPD.

In cells expressing only *iqg1-4A* (*iqg1-4A GAL1-IQG1* cells grown in YPD, henceforth referred to as *iqg1-4A* cells), formation of the actin ring occurred 20 minutes earlier in the time course than in both sets of control cells (Figure 2A). Approximately 13% of *iqg1-4A* cells had both an Iqg1 ring and actin ring 40 minutes after release from arrest, whereas the same cells in
YPGR had less than 1% at this time point and cells expressing only *IQG1* had no rings at 40 minutes (p = 9.2 x 10^{-6} and p = 4.5 x 10^{-6}) (Figure 2 A and B). The *iqg1-4A* cells that formed Iqg1 and actin rings at 40 minutes had not yet entered anaphase, indicated by the single DNA mass (Figure 2B). It is noteworthy that, contrary to a previous report, overexpression of wild type *GAL1-IQG1* in YPGR control cells did not induce premature ring formation (Epp and Chant, 1997). At the 60 minute time point, *iqg1-4A* and control cells contained actin rings. Control cells with both an Iqg1 ring and an actin ring either contained two DNA masses (Figure 2C) or an elongated mass of DNA spanning the bud neck, indicating that the cell is in anaphase. In *iqg1-4A* cells that had formed Iqg1 and actin rings at 60 minutes, some cells had yet to go through anaphase, since they had only a single nucleus (Figure 2C, D). There was a significant increase in rings observed in *iqg1-4A* cells at the 60 minute time point compared to controls, likely due to the fact that rings in *iqg1-4A* cells could be formed prior to anaphase, while in control cells only those that had initiated anaphase contained rings (p = 0.01 compared to YPGR control and p = 9.5 x 10^{-6} compared to YPD control) (Figure 2A). At the 20 minute time point, no Iqg1 or actin rings were seen in control or experimental cells. At the 80 and 100 minute time points there was no statistically significant difference in the number of cells with Iqg1 and actin rings between the *iqg1-4A* cells and YPGR controls, but these cells did have a greater amount of rings than YPD controls (Figure 2A). These data show that expression of *iqg1-4A* at endogenous levels increased ring formation similar to overexpression of *IQG1* using the *GAL1* promoter, showing that *iqg1-4A* is constitutively active for actin ring formation. Overexpression of wild type *IQG1* increases the number of rings relative to YPD controls but does not change the timing of ring assembly.
To analyze whether the Iqg1/actin rings formed prior to anaphase onset, the DNA content of over 100 iqg1-4A cells and YPD and YPGR control cells with rings at the 40, 60, and 80 minute timepoints was scored to determine if there was one nucleus, two nuclei, or a nucleus in the process of division. Cells were judged to be in the process of division if the DAPI signal was elongated across the bud neck. Of Iqg1 and actin rings formed in control cells, 92%-98% had a nucleus in the process of division or completely separated, indicating that actomyosin ring formation occurred after anaphase onset (Figure 2D). In contrast, 55% of iqg1-4A cells with rings had only a single nucleus, indicating that preventing phosphorylation of Iqg1 accelerated actin ring formation (Figure 2D). These results are consistent with the finding that wild type cells form actin rings only when there is an anaphase spindle, while Iqg1 phosphomutants formed actin rings in cells with both pre-anaphase and anaphase spindles (Naylor and Morgan, 2014). Our data support the hypothesis that phosphorylation of the 4 perfect Cdk sites flanking the CHD of Iqg1 negatively regulates actin ring formation.

Changing Cdc14 Levels Affects Actomyosin Ring Formation

Cdc14 is the final protein in the MEN signaling cascade, and has been shown to dephosphorylate Cdk1 targets (Chin et al., 2012; Visintin et al., 1998). To test the hypothesis that Cdc14 regulates the timing of actin ring formation, we overexpressed CDC14 in metaphase cells and examined formation of the actin ring. For these experiments, we obtained the GAL1-CDC14 construct used by Sanchez-Diaz et al (Sanchez-Diaz et al., 2012). Cells were arrested using the microtubule disruptor nocodazole, which activates the spindle assembly checkpoint and arrests cells prior to anaphase. Cells that had been cultured in YPD overnight were resuspended into YPD (control, GAL1-CDC14 repressed) or YPGR (experimental, GAL1-CDC14 expressed) simultaneously with nocodazole (5μg/ml) and incubated for 2.5 hours. Cells were
analyzed for actin rings using A568 phalloidin. Cells overexpressing CDC14 formed twice as many actin rings as control cells (p = 0.008) (Figure 3A and 3B). The increase in actin rings in nocodazole-arrested cells overexpressing CDC14 indicates that Cdc14 activity can promote premature actin ring formation. Control cells exhibited a higher percentage of actin rings than expected, since wild type cells do not form actin rings in nocodazole (Naylor and Morgan, 2014), but this may be due to incomplete inhibition of the GAL1 promoter in YPD and elevated Cdc14 protein levels. It has recently been reported that overexpression of Cdc14 improves the efficiency of cytokinesis when Cdk is inactivated before anaphase (Sanchez-Diaz et al., 2012).

If Cdc14 regulates the timing of actin ring formation by reversing inhibitory phosphorylation by Cdk1, then cdc14-1 mutants will be defective for actin ring formation. Although actin ring formation has been seen in many MEN mutants after bypassing mitotic arrest, a careful analysis of actin ring formation in CDC14 mutant cells has not been reported. To determine if actin ring formation requires Cdc14 function we utilized a temperature sensitive mutant allele of CDC14, cdc14-1, and bypassed mitotic arrest using a 2 micron plasmid containing SIC1. Cells were cultured overnight and synchronized in mitosis using nocodazole for 90 minutes at room temperature. Next they were incubated at room temperature (RT, control) or 37°C (experimental), to inhibit cdc14-1 activity, for an additional 90 minutes. Samples were taken during nocodazole arrest, then the nocodazole was removed and two timepoints were taken after release from mitotic arrest. Cells were fixed, stained for actin, and examined by epifluorescence microscopy.

In nocodazole, cdc14-1 cells almost completely failed to form actin rings at the non-permissive temperature (2% of cells) (p = 0.001) (Figure 3C). In the room temperature controls, ~18% of cells formed rings, due to the overexpression of SIC1 as previously reported (Sanchez-
Diaz et al., 2012). After release from mitotic arrest, actin ring formation in cdc14-1 cells remained significantly higher in room temperature controls compared to the non-permissive experimental conditions at both the ten and twenty minute timepoints (Figure 3C). These data show that Cdc14 activity is important for actin ring formation in addition to its role in inactivating Cdk1.

The Failure of CDC14 Mutants to Form Actin Rings Can Be Rescued By Expression of iqg1-4A

Since iqg1-4A and overexpression of CDC14 affect the timing of actin ring formation, and cdc14-1 cells overexpressing SIC1 fail to form actin rings at the non-permissive temperature, Cdc14 might regulate actin ring formation through dephosphorylation of Iqg1 at Cdk sites. To test this hypothesis, control cells that contained cdc14-1 and GAL-SIC1ΔNT-myc to bypass mitotic arrest were used (Chin et al., 2012). Experimental cells combined the cdc14-1 and GAL-SIC1ΔNT-myc alleles with iqg1-4A and a chromosomal deletion of wild type IQG1 leaving iqg1-4A as the sole source of Iqg1.

Cells were synchronized in mitosis using nocodazole for 90 minutes at room temperature, then resuspended in YPGR (to overexpress SIC1) with nocodazole and incubated at 37°C, to inhibit cdc14-1 activity, for an additional 90 minutes. After release from nocodazole arrest samples were taken at 10 and 20 minutes, fixed, and stained using phalloidin to visualize F-actin. Similar to the previous experiment, cdc14-1 GAL-SIC1ΔNT-myc control cells formed few actin rings at either time point (7% and 6%) (Figure 4A-C). However, for the cdc14-1 GAL-SIC1ΔNT-myc iqg1-4A strain, 46% of cells at the ten-minute timepoint and 44% of cells at the twenty-minute timepoint contained actin rings (p = 0.0003 and p = 0.001) (Figure 4A).
GAL-SIC1ΔNT-myc \textit{iqg1-4A} cells 10 minutes after release from metaphase arrest typically had a single DNA mass indicating pre-anaphase cells (Figure 4B), while 20 minutes after release some cells had segregated DNA (Figure 4C). The \textit{iqg1-4A} mutant rescues the \textit{cdc14-1} mutant allele’s inability to assemble an actin ring. These results suggest that Iqg1 is the primary Cdc14 target involved in temporal regulation of actin ring formation.

\textbf{Iqg1 and Cdc14 Interact \textit{In Vivo} and Iqg1 is a Cdc14 Substrate \textit{In Vitro}}

Since our experiments suggested that Iqg1 is the target of Cdc14 that regulates actin ring formation, we looked for an interaction between Iqg1 and a substrate trap Cdc14 mutant in yeast extracts by co-IP. Wild-type Iqg1 co-purified with the Cdc14 substrate-trap protein (Figure 5A). However, an Iqg1 mutant (Iqg1-3T) in which the Cdk phosphorylation sites at positions 7, 354, and 404 were changed from serines to threonines, did not co-purify with the Cdc14 substrate trap. Cdc14 is highly selective for phosphoserines within consensus Cdk sequences (Bremmer et al., 2012). This result suggests that Cdc14 recognizes Iqg1 as a substrate and that recognition is dependent on just three N-terminal Cdk sites that flank the CHD and contain the optimal Cdc14 recognition motif.

We also directly tested if the N-terminal Cdk sites flanking the CHD could be efficiently dephosphorylated by Cdc14 \textit{in vitro} using phosphopeptide substrates. Cdc14 specificity can be effectively evaluated using phosphopeptides, and catalytic efficiency of Cdc14 towards phosphopeptides containing different Cdk phosphorylation site sequences can vary by several orders of magnitude (Bremmer et al., 2012). As expected, phosphorylated Ser354 and Ser404 peptides were very efficient substrates, comparable to a previously characterized optimal site in the Acm1 protein (Figure 5B). The peptide containing phosphorylated Thr299 exhibited essentially no activity, consistent with Cdc14’s selectivity for serine Cdk sites. Two additional
Ser Cdk sites that lack the optimal Lys/Arg at position +3, pS365 and pS1347, were used as controls and were dephosphorylated at lower rates as expected. Surprisingly, phosphorylated Ser7 was not dephosphorylated as efficiently as Ser354 and Ser404, even though this serine is followed by a lysine at the +3 position (Figure 4B). Nonetheless, these data confirm that at least two of the four perfect Cdk sites near the Iqg1 N-terminal CHD behave as optimal Cdc14 substrate sites in vitro.

Actomyosin Ring Contraction Defects in iqg1-4A Cells

Since cells expressing iqg1-4A formed actin rings early and had cytokinesis defects, we used live cell imaging to examine actomyosin ring contraction. We considered that actomyosin ring contraction might be occurring early, since the ring is assembled earlier, or that the rate or symmetry of contraction might be affected. For these experiments, we used cells expressing iqg1-4A, MYO1-GFP, and TUB1-mCherry (Khmelinskii et al., 2007; Shannon and Li, 1999). Contraction of the actomyosin ring did not occur earlier in the cell cycle in iqg1-4A cells, as Tub1-mCherry showed that the spindle was completely elongated before contraction began (Figure 6A). In control cells, Myo1-GFP exhibited symmetric contraction to a single dot over an average of 8.1 +/- 1.0 minutes, consistent with previous results (N = 6) (Figure 6B, see Figure 6B.mov for another example) (Bi, 2001; Lippincott and Li, 1998b; Stockstill et al., 2013). However, Myo1-GFP failed to contract normally in iqg1-4A cells. Cells expressing iqg1-4A exhibited what appeared to be disassembly of Myo1-GFP, with the GFP signal becoming dimmer without the diameter of the ring decreasing (N =6) (Figure 6C, see Figure 6C.mov for another example). This loss of Myo1-GFP signal occurred over the same length of time as contraction in control cells, 8.3 +/- 2.2 minutes. To look at disassembly of Myo1-GFP, a
fluorescence intensity plot was generated. In contrast to control cells, the Myo1-GFP signal rapidly decreased in intensity, without the peaks moving closer together as during contraction in control cells (Figure 6C). It has been shown previously that preventing nuclear export of Cdc14 to the cytoplasm caused cytokinesis defects and a failure of Myo1-GFP to contract (Bembenek et al., 2005). Therefore, timely dephosphorylation of Cdc14 targets at the bud neck may be essential for normal myosin contraction. A defect in Myo1-GFP contraction was recently reported in cells in which the Cdc14 target Inn1 was forced to undergo constitutive Cdk phosphorylation (Kuilman et al., 2015). Therefore, there are at least two Cdc14 targets, Iqg1 and Inn1, required for proper contraction of myosin during cytokinesis.

The bud necks of the iqg1-4A cells were significantly larger than control cells, 1.9 μm compared to 1.3 μm (p = 0.0002). Effects on the size of the bud neck have been seen after perturbation of many other cytokinesis and septation genes, including Hof1, Cyk3, Inn1, and Chs2 (Korinek et al., 2000; Kuilman et al., 2015; Lippincott and Li, 1998a; Stockstill et al., 2013). Mechanistically, the reason for the altered bud neck size is unknown, but it is likely due to the coupling between cytokinesis, septation, and selection of the future bud site in budding yeast. Our results suggest that timely phosphorylation and dephosphorylation of Iqg1 is needed to ensure normal contraction of the ring during cytokinesis and maintenance of normal bud neck morphology.

DISCUSSION

Dephosphorylation Of Iqg1 By Cdc14 Regulates Actin Ring Assembly

Actin ring assembly in budding yeast is restricted to anaphase, but the mechanism by which this is accomplished has been unclear. Expression of Iqg1 is cell cycle regulated, and Epp and
Chant reported that overexpression of Iqg1 was able to drive premature actin ring assembly (Epp and Chant, 1997). However, in our strain background, overexpression of IQG1 using the GAL1 promoter did not affect the timing of actin ring assembly. This can be seen from the data in Figure 2, where control cells cultured in YPGR that overexpress IQG1 do not form actin rings prior to anaphase.

In *C. albicans*, phosphorylation of Iqg1 by Cdk1 at fifteen perfect and minimal Cdk consensus sites was shown to affect the timing of actin ring formation (Li et al., 2008). During the course of our study, it was shown that inhibition of Cdk1 activity in metaphase cells, and Iqg1 mutations that prevent phosphorylation at N-terminal Cdk site clusters cause premature actin ring assembly in *Saccharomyces cerevisiae* (Naylor and Morgan, 2014). In this latter study, mutation of two distinct Cdk site clusters chosen based on proximity within the primary sequence resulted in partial actin ring assembly phenotypes, whereas a more severe effect on actin ring formation was observed with simultaneous mutation of both clusters, containing fourteen perfect and imperfect Cdk sites total. This suggested that Iqg1 function in directing final actomyosin ring maturation is controlled by multiple Cdk phosphorylation events spread over a relatively large primary sequence space. A role for Cdc14, or another phosphatase, in the dephosphorylation and regulation of Iqg1 was not addressed in either of these studies. Here, we have shown that 1) preventing phosphorylation of just the four perfect Cdk sites in the N-terminus of Iqg1 (which come from both of the clusters analyzed by Naylor and Morgan) is sufficient to cause premature actin ring formation and 2) that Iqg1 is a novel substrate of Cdc14 whose dephosphorylation at a few perfect Cdk sites helps regulate the timing of actin ring assembly and the fidelity of actomyosin ring function.
Our results are largely consistent with the conclusions of Naylor and Morgan. Both studies found that Cdk phosphorylation of sites in the Iqg1 N-terminus restrain actin ring formation until late anaphase after chromosome segregation is completed. Both studies likewise observed early recruitment of Iqg1 to the division site when Cdk phosphosites were mutated. And consistent with the work of Naylor and Morgan, we did not observe premature contraction of Myo1 in cells expressing the \textit{iqg1}-4\textit{A} mutant, confirming their conclusion that actomyosin ring assembly and constriction are regulated independently. Our results differ from those of Naylor and Morgan, in that they did not report cytokinesis phenotypes or Myo1 contraction defects in their Iqg1 phosphomutant cells, and the reason for this difference is unclear since both studies were done in the W303 background and involved integrated \textit{IQG1} alleles expressed under the endogenous promoter (Naylor and Morgan, 2014). However, our results are consistent with analysis of Iqg1 in \textit{C. albicans}, where premature actin ring assembly correlated with cytokinesis defect and aberrant Myo1-GFP contraction (Li et al., 2008).

Of the four amino acids mutated in our study, serines at 354 and 404 of Iqg1 have been shown to be phosphorylated by Cdk1/Cdc28 in a cell-cycle dependent manner \textit{in vivo} (Holt et al., 2009). We demonstrated that these two serines are Cdc14 substrates \textit{in vitro}. Although phosphorylation of serine has not been observed at S7, this peptide may be poorly detected by MS. Serine 7 is predicted to be phosphorylated by the NetPhos2.0 neural network predictor of eukaryotic phosphorylation sites (Blom, 1999). This serine was not an effective Cdc14 substrate \textit{in vitro}, so whether the phosphorylation and dephosphorylation of this residue occurs \textit{in vivo} is currently unclear. Phosphorylation of the threonine at position 299 has also not been detected \textit{in vivo}, but is predicted to occur, but this threonine is not a Cdc14 substrate (Blom, 1999). Further studies
are needed to determine if the threonine at position 299 remains phosphorylated after the serines are dephosphorylated by Cdc14 and to define its functional importance.

Regulation of cytokinesis may be a conserved function of Cdc14 phosphatases. In addition to its requirement for cytokinesis in budding yeast, Cdc14 homologs have been reported to affect cytokinesis also in fission yeast, *Caenorhabditis elegans, Xenopus laevis*, and human, although few molecular targets affecting cytokinesis have not been identified in these systems (Mocciaro and Schiebel, 2010). In fission yeast, the Cdc14 homolog Clp1 localizes to the division site through binding to the anillin ortholog Mid1, where it stabilizes the contractile ring (Clifford et al., 2008). One key substrate of Clp1 at the contractile ring is Cdc15, a Hof1 homolog and an important regulator of actomyosin ring assembly, function, and septation (Clifford et al., 2008). The Iqg1 ortholog Rng2 may be another contractile ring substrate of Clp1, because it was identified as a Clp1 binding partner in a recent proteomics analysis, although its functional importance has not been demonstrated (Chen et al., 2013). Overall, few targets of Cdc14 orthologs directly involved in execution of cytokinesis are known. Our data reveal that Cdc14 functions in the final stage of actomyosin ring assembly in budding yeast, and suggest that Iqg1 is the sole Cdc14 target that regulates the timing of actin ring assembly.

Role of the MEN in actomyosin ring assembly

In light of our results that Cdc14 function is needed for normal actin ring formation prior to cytokinesis, it is somewhat surprising that previous studies with conditional MEN mutants upstream of Cdc14 did not observe a similar defect (Lippincott et al., 2001; Luca et al., 2001; Vallen et al., 2000). A critical function of the MEN in promoting cytokinesis is to release Cdc14
from nucleolar sequestration and target it to the cytoplasm where it can dephosphorylate its
cytokinetic targets (Bembenek et al., 2005; Kuilman et al., 2015; Mohl et al., 2009; Sanchez-
Diaz et al., 2012). In the previous studies of the MEN proteins Tem1 and Mob1, mitotic exit was
induced by using either net1-1 temperature sensitive allele or SIC1 overexpression, and it is
likely that active Cdc14 was released from the nucleolus as a result (Lippincott et al., 2001; Luca
and Winey, 1998). In the case where dbf2-2 was examined at the semi-permissive temperature,
or a CDC15 deletion mutant was used, and actin ring formation was normal, there may not be a
complete absence of Cdc14 activity (Hwa Lim et al., 2003; Menssen et al., 2001). One prior
study did report that actin rings form normally in cdc14 cells (Vallen et al., 2000). However, the
results were based on single timepoints after a long incubation at restrictive temperature and
therefore would not reveal the changes in the kinetics of ring formation that we report here.
It will be important to determine in future studies the activity and localization of Cdc14 relative
to actomyosin ring formation and contraction. We are currently evaluating actin ring formation
in FEAR network mutants to test if FEAR-released Cdc14 can support actin ring formation.

Mechanism by which phosphorylation regulates Iqg1 function

Another question raised by our study is how the phosphorylation of Iqg1 by Cdk1 prevents
actin ring assembly prior to anaphase. One attractive hypothesis is that phosphorylation of the
Cdk sites alters the ability of Iqg1 to bind to F-actin, since the Cdk sites flank the CHD.
Alternatively, rather than affect the binding to F-actin directly, the phosphorylation mutants
could affect Iqg1’s interactions with formin proteins Bni1 and Bnr1, as has been shown in *C.
albicans* (Li et al., 2008). Iqg1, Bni1, and Bnr1 are all required for actin ring assembly in
budding yeast, but how they might cooperate in generating the actin ring is not known (Shannon
and Li, 1999; Tolliday et al., 2002). Phosphorylation of Iqg1 could also prevent interaction with
other proteins, such as those that help recruit Iqg1 to the contractile ring. This would be consistent with the observation that the Iqg1-4A mutant protein appears earlier than the wild-type protein at the bud neck. The IQ domains of Iqg1 interact with Mlc1 and this interaction is important for recruiting Iqg1 to the contractile ring (Shannon and Li, 2000). The IQ domains are also situated in the Iqg1 N-terminal region just downstream of several of the optimal Cdc14 target sites (Figure 1A). However, the recent study from Naylor and Morgan did not find any evidence that Cdk site mutations affected the interaction between Iqg1 and Mlc1 (Naylor and Morgan, 2014), and the interaction between *iqg1-4A* and *iqg1-4E* mutants and GST-Mlc1 in a GST pull-down assay was indistinguishable from wild type Iqg1 (our unpublished results).

How mutation of the phosphorylation sites in Iqg1 causes cytokinesis defects is unclear. The interaction between Iqg1 and Tem1 is required for myosin ring contraction, but the GRD of Iqg1 that mediates the interaction with Tem1 is not near the Cdk sites (Shannon and Li, 1999). The mechanism by which the *iqg1-4A* mutant affects contraction of the actomyosin ring could be due to loss of coordination between cytokinesis and septation (Bi, 2001). Iqg1 is assumed to have a function in septation, since it is an essential gene and cytokinesis is not an essential process in budding yeast, but exactly how Iqg1 might function to link septation and cytokinesis is unclear. One possibility is through an interaction with the Hof1 protein, which promotes primary septum deposition by Chs2 and is required for normal myosin contraction and bud neck size (Lippincott and Li, 1998a; Nishihama et al., 2009). Iqg1 interacts with Hof1 directly, and Hof1 appeared at the bud neck prematurely in cells expressing Cdk1 phosphorylation-deficient Iqg1 (Naylor and Morgan, 2014; Tian et al., 2014). Thus it is conceivable that the mis-regulated assembly of proteins in the contractile ring in the absence of normal Iqg1 phosphorylation results in a structurally and functionally compromised ring.
There are other possible mechanisms by which the Iqg1-4A mutant protein could perturb ring contraction. A quantitative model for generation of force in the actomyosin ring suggested that Iqg1 could augment cofilin function in the ring by acting as a crosslinker during actin filament depolymerization (Mendes Pinto et al., 2012). If mutation of the phosphorylation sites disrupts the ability of Iqg1 to act as an actin crosslinker during actomyosin ring contraction, it could result in lack of contraction seen. In order to test this hypothesis, the effect of mutations on Iqg1’s crosslinking function and modeling studies will be needed.

Regardless of the mechanisms by which phosphorylation acts, a general conclusion of our work is that Cdc14 regulation of Iqg1 function contributes to the proper temporal coordination of cytokinesis after nuclear division is complete.

MATERIALS AND METHODS

Strains and media

All *S. cerevisiae* strains were derived from the W303 background and are listed in Table 1. Cultures were grown at 30°C in YEP+2% D-glucose (YPD) or YEP+2% galactose and raffinose (YPGR), except where noted.

Plasmid construction and mutagenesis

Plasmids are listed in Table 2. To make the *IQG1* phospho-mutant plasmids the Stratagene QuikChange II XL Multi Site-Directed Mutagenesis Kit was used to mutate pTL12, which contains full length *IQG1* under its endogenous promoter with a 13-myc tag on the C-terminus (Lippincott and Li, 1998b). The kit was used per manufacturer’s instruction with a few modifications. PCR primer amount was sensitive and needed to be 200 ng with template DNA
concentration at 30 ng. The Pfu was added 5 min after starting the following program: 95°C for 6 minutes, 1 cycle, 98°C for 1 minute, 55°C for 1 minute, 65°C for 20 minutes, 18 cycles, 72°C for 7 minutes, 1 cycle.

Miniprep plasmid isolation on the Site-Directed Mutagenesis transformation colonies was performed according to the Wizard Plus SV Minipreps DNA Purification System protocol and resulting purified DNA was sequenced by Missouri S&T cDNA Resource Center for verification of mutations. The 4 consensus Cdk sites are located at amino acids S7, T299, S345, and S404. All four sites were changed either to alanine or to glutamic acid, creating 2 final plasmids, expressing \textit{igq1-4A} (pDM9) with all sites mutated to alanine or \textit{igq1-4E} (pDM15) with all sites mutated to glutamic acid (Table 2). To integrate \textit{igq1-4A} at the chromosomal locus, plasmid pHIP082 was used as template for site-directed mutagenesis using the primers to introduce the T299A mutation, and the resulting plasmid, pMM1, was sequenced to verify the mutation.

pMM1 was cut with AflII and transformed into KSY184, and URA+ transformants containing the integrated plasmid were then plated on FOA media to select for recombination between the \textit{IQG1-HA} and \textit{igq1-4A-3xFLAG} alleles (Scherer and Davis, 1979). Genomic DNA from URA- colonies was sequenced to determine that KSY522 contained the \textit{igq1-4A-HA} allele.

Yeast Transformation

Yeast transformations were performed by modified lithium acetate method (Gietz et al., 1992). After 30 minutes incubation at 30°C, 50 μl of DMSO was added and mixed. Cells were plated on appropriate media and incubated at 30°C or 25°C for two to three days.

Analysis of Cell Morphology
Strains KSY378, KSY396, and KSY520 have wild type *IQG1* under the *GAL1* inducible promoter, allowing wild type *IQG1* to be shut off in presence of glucose, and express *iqg1-4A*, *iqg1-4E*, and *IQG1* respectively, under the *IQG1* promoter. Cells were cultured overnight in 5 ml YPGR at 30°C. The cells were then diluted (1ml into 5ml) into YPGR (control) or YPD (experimental) media and were allowed to continuing growing at 30°C for 5-7 hours. Cell morphology was then observed using an Olympus CH2 with objective EA40 NA0.65. For each strain and treatment 200 cells were counted and scored as chains if they contained 3 or more connected cell bodies. Experiments were repeated three times. Zymolyase treatment was performed as described (Lippincott and Li, 1998b).

Collection of Time Points

To examine the timing of actin ring formation, KSY378 or KSY520 cells were grown overnight in 5 mL YPGR, diluted into 50 mL, and grown for 3 hours at 30 °C. α mating factor was added to a final concentration of 100μg/mL and cells incubated for additional 3 hours to arrest cells in G1. The cells were then pelleted and washed 3 times with sterile water to remove α factor. They were then resuspended in 35 mL YPD or YPGR. Time points were taken by removing 5 mL at 20, 40, 60, 80, and 100 minutes after resuspension into YPD or YPGR. To examine the effect of Cdc14 overexpression on actin ring formation, strain KSY509 was grown overnight in 5 mL YPD at 30 °C, and cells were pelleted and resuspended into YPD or YPGR with simultaneous addition of nocodazole at a final concentration of 5μg/ml and incubated for additional 2.5 hours to arrest cells in mitosis.

To determine if *cdc14-1* cells could make actin rings at the non-permissive temperature when mitotic arrest was bypassed using *SIC1* expressed at high level using a 2μ plasmid, strain
KSY482 was used (Tables 1 and 2). Cells were grown overnight in 5ml YPD at room temperature (RT, 25°C). After resuspension into fresh YPD, nocodazole (5 μg/mL) was added and cells incubated for additional 2 hours to arrest cells in mitosis. Cells were then placed at RT (control) and 37°C (experimental) for 90 minutes. A sample was collected before nocodazole was removed by washing cells twice with dH20. Following resuspension in fresh medium, 10 minute and 20 minute time point samples were collected.

Strains KSY504 and KSY510, containing the temperature sensitive cdc14-1 allele and integrated GAL1-SIC1ANT, were grown overnight in 5 mL YPD at RT, resuspended into YPGR (to express SIC1 under the GAL1 promoter) with nocodazole (5μg/mL), and incubated for 90 minutes to arrest cells in mitosis. Cells were then placed in YPGR with nocodazole at 37°C for an additional 90 minutes to allow for inactivation of cdc14-1. A sample was collected before nocodazole was removed by washing twice with dH20. Following resuspension in fresh medium, 10 and 20 minute time point samples were then collected.

Immunofluorescence

Cells were fixed by addition of formaldehyde to 5% and rotation for 1 hour at RT. Cells were then washed twice with sorbitol buffer (1M Sorbitol in 50mM KPO4, pH 7.5) to remove formaldehyde and stored at 4°C for up to a week. Cells were permeabilized by zymolyase treatment and then affixed to a 10 well microscope slide coated with poly-lysine. Cells were pipetted off and slide was allowed to air dry before being washed 3 times with 1μg/ml BSA in PBS (Lippincott and Li, 1998b).

Cells were stained using primary antibody mouse anti-myc 9E10 (Covance) and FITC-conjugated secondary antibody (Jackson ImmunoResearch Laboratories, West Grove, PA) as
described (Lippincott and Li, 1998b). Actin staining using A568 phalloidin (Invitrogen) was also performed as described (Lippincott and Li, 1998b). Mounting solution containing 1μg/mL DAPI was added before the coverslip was sealed to the slide.

Images were captured using an Olympus IX51 inverted microscope at 1,000X total magnification using a UPLSAPO 100X NA 1.4 objective. DA/FI/TX-3X3M-a triple-band Sedat Filter set was used (Brightline). Images were captured with a Hamamatsu ORCA285 CCD camera. A Prior motorized Z drive was used to capture image stacks of 20 Z-planes in 0.2μm steps. Shutters, filters, and camera were controlled using SlideBook software, and this software was used to perform deconvolution of the image stacks and create projection images (Intelligent Imaging Innovations, Denver, CO).

Yeast Protein Extracts

The protocol used is a modified version of Rigaut’s (Rigaut et al., 1999). KSY286, KSY472, KSY473, and KSY520 cells were grown over night in YPGR, then diluted into YPD and arrested with alpha factor for three hours. Cells were washed three times in sterile water, then released from alpha factor for sixty minutes before cells were pelleted and resuspended in 100μl U buffer (50 mM Hepes pH 7.5, 100 mM KCL, 3 mM MgCl₂, 1 mM EGTA) + protease inhibitors (0.5 μg/ml pepstatin, chymostatin, antipain, aprotinin, leupeptin) +PMSF (1mM). For cell lysis, 0.3 mg of acid washed glass beads were added to cells and chilled on ice for 10 minutes. The cell suspension was vortexed 5 times (1 minute on vortexer at max speed and 1 minute on ice). The cell suspension was then centrifuged at 4°C at RCF of 16,000 xg for 5 min. The supernatant containing soluble protein was removed and the protein concentration determined using a
NanoDrop 1000 (Thermo Scientific). An equal volume of 2X Laemmli Sample Buffer was added and tubes were boiled for 5 min then centrifuged for 5 minutes and frozen until use.

Western Blotting

Protein samples were separated on 7.5% or 12.5% SDS PAGE gels, then transferred to nitrocellulose and blocked in 5% milk in TBST before antibody staining. Mouse monoclonal anti-myc 9E10 (Covance) and mouse monoclonal anti-actin mAbGEa (Thermo Scientific Pierce) were used at 1:1000 dilution. Mouse anti-FLAG M2 (Sigma) was used at 1:1,000 dilution. EZview anti-HA-7 agarose resin (Sigma) was used for substrate trap co-IP experiments. Donkey anti-mouse secondary antibody conjugated to HRP (Jackson Immuno research Laboratories, Inc.) was used at 1:5000 concentration. The blot was then developed using an ECL kit (SuperSignal West Pico Chemiluminescent Substrate, Thermo Scientific) and imaged and analyzed on a BioRad ChemiDoc MP system with Image Lab software.

Phosphatase Assays and Co-immunoprecipitation (Co-IP)

Recombinant Cdc14 was purified and assayed using synthetic phosphopeptide substrates (Genscript) as described (Bremmer et al., 2012). Peptide sequences were: SG(pS)PSKPGNN (Iqg1pS7), EY(pS)PKNNKL (Iqg1pS354), HY(pSP)RMRER (Iqg1pS404), YY(pS)PTSKYL (Iqg1pS365), DF(pS)PVHKSKF (Iqg1pS1347), and LI(pT)PRKND (Iqg1pT299), where pS and pT are phosphoserine and phosphothreonine, respectively. Crude phosphopeptides were purified using Sep-Pak C18 cartridges (Waters Corporation). Substrate trap co-IP assays were performed as described (Eissler et al., 2014).
Live Cell Imaging

KSY508 cells were grown overnight and placed on agarose pads made by melting 0.2 g of agarose in 1 ml -TRP media (Waddle et al., 1996). The cells were then viewed using the Olympus Inverted Epifluorescent Microscope with a 100X Plan Apo NA 1.4 DIC Objective. FITC filter (EX 482/35 506DM EM 536/40) was used (Brightline). Images were captured with a Hamamatsu ORCA285 CCD camera. Shutters, filters, and camera were controlled using SlideBook software (Intelligent Imaging Innovations, Denver, CO).

ACKNOWLEDGEMENTS

The authors would like to acknowledge the labs of Rong Li, Alberto Sanchez-Diaz, Frank Luca, John Pringle, and Elmar Schiebel for generously providing yeast strains and plasmids. We would like to thank the sponsors and organizers of the Midwest Yeast Meeting at Northwestern University, which led to this collaboration. Thanks to Hsiu-Jen (Sharen) Wang and Shakila Tobwala in Dr. Nuran Ercal’s lab for help with the BioRad imager. K.B.S. and D.P.M. would like to thank the Biological Sciences Department for support.

REFERENCES

Figure 1. Effect of Iqg1 Phosphorylation Mutants on Cytokinesis. A. Schematic showing domains of Iqg1 to scale and the relative positions of the four perfect Cdk consensus sites. Domains in Iqg1 are the calponin homology domain (CHD), IQ motifs (IQ), GAP-related domain (GRD), and Ras GAP C-terminus (RGCl). Numbers above show the amino acids at the beginning and end of each domain, numbers below with asterisks represent the location of the
four perfect Cdk consensus sites. B. Cells were diluted, spotted on –his plates with galactose and raffinose (GR) or dextrose (D), and grown for three days at 30°C. Row 1, IQG1-myc GAL1-IQG1, row 2, iqg1-4-myc GAL1-IQG1, row 3 iqg1-4E-myc GAL1-IQG1. C. Western blot of cell extracts probed for Iqg1-myc and actin. Extracts were made from cells arrested in alpha factor in YPD for three hours, followed by growth in YPD for one hour to repress GAL1-IQG1. Lanes 1-4 are from the same Western blot, with an intervening lane between 1 and 2 cropped out. Lane 1 iqg1-4-myc GAL1-IQG1, lane 2 IQG1-myc GAL1-IQG1, lane 3 GAL1-IQG1, lane 4 iqg1-4E-myc GAL1-IQG1. Numbers below Iqg1-myc bands are the Iqg1-myc band intensity adjusted for actin and normalized to wild type (lane 2). D. Normal cell morphology of iqg1-4A GAL1-IQG1 cells grown in YPGR, left panel. Chain phenotype of three attached cell bodies of iqg1-4A GAL1-IQG1 cells grown in YPD, middle panel. Chain formed in iqg1-4E GAL1-IQG1 cells in YPD, right panel. Scale bar = 5 μm. E. Quantitation of chain phenotype. Cells containing wild-type IQG1 under the GAL1 promoter and either wild type IQG1 or phosphorylation mutants iqg1-4A or iqg1-4E expressed under the IQG1 promoter were grown in YPGR (GAL1-IQG1 expressed) or YPD (GAL1-IQG1 repressed). For each replicate, 200 cells of each strain and treatment were counted and scored as chains if they contained 3 or more connected cell bodies. Zym indicates treatment with zymolyase before microscopic examination. Error bars are standard deviations and p values were calculated using the Student’s t-test in Excel comparing iqg1-4A GAL1-IQG1 and iqg1-4E GAL1-IQG1 to IQG1 GAL1-IQG1 cells under the same conditions. * p ≤ 0.01
Figure 2. Mutations preventing phosphorylation of Iqg1 lead to formation of the actin ring before anaphase.

A. Timing of actin ring formation. Cells were synchronized in G1 using α factor, and time points were taken at 20 minute intervals after release from arrest. During α factor arrest, *IQG1 GAL1-IQG1* or *iqg1-4A GAL1-IQG1* cells were cultured in media containing galactose (YPGR) to allow expression of wild type *GAL1-IQG1* or glucose (YPD), to repress expression of *GAL1-IQG1*. Labels in the key show which genes were expressed. Average of three experiments with 100 cells analyzed at each timepoint. Error bars are standard deviations and p values were calculated using the student’s t-test in Excel. * p \leq 0.01

B. Examples of cells at 40 minutes. Actin, Iqg1, and DNA in *iqg1-4 GAL1-IQG1* cells grown in YPGR as a control (top panel) and *iqg1-4A GAL1-IQG1* experimental cells grown in YPD (bottom panel) at the 40 minute time point. C. Examples of cells with actin and Iqg1 rings at 60 minutes. Control *iqg1-4 GAL1-IQG1* cells in YPGR (top panel) and *iqg1-4A GAL1-IQG1* experimental cells grown in YPD (bottom panel) cells at the 60 minute time point. B. and C. Labels on left show which genes were expressed. Images are deconvolved single plane projections of a Z-series. Scale bar = 5 μm.

Arrows in merged panels show actin and Iqg1 rings. D. *IQG1 GAL1-IQG1* or *iqg1-4 GAL1-IQG1* cells containing actin and Iqg1 rings were examined using DAPI staining to determine if they contained one nucleus, two nuclei, or a nucleus in the process of dividing. X axis is labeled to reflect the genes expressed: *IQG1* is *IQG1 GAL1-IQG1* cells grown in YPD, *iqg1-4* is *iqg1-4 GAL1-IQG1* cells grown in YPD, and *iqg1-4A GAL1-IQG1* is *iqg1-4A GAL1-IQG1* cells grown in YPGR.
Figure 3. Cdc14 regulates actin ring formation. A. Overexpression of Cdc14 causes formation of actin rings during mitotic arrest. Cells containing *CDC14* under the *GAL1* promoter were used to selectively overexpress Cdc14. Cells grown in glucose were pelleted and resuspended in media with nocodazole containing either glucose (control) or galactose (experimental) for 2.5 hours at 30 °C, then fixed for imaging. Actin rings were quantified in three replicates of 100 cells per treatment type. Data are the averages with standard deviations. A p value of 0.008 was obtained using the student’s t-test. B. Actin and DNA staining during nocodazole arrest. Top
panel, lack of actin ring in control cell (YPD), and bottom panel, actin ring formation in \textit{GALI-CDC14} cells. Arrow indicates actin ring. Scale bar = 5 μm. C. Effect of inhibiting Cdc14 activity on actin ring formation. Cells with a temperature sensitive \textit{cdc14-1} allele and \textit{SIC1} expressed from a 2 micron plasmid were diluted into YPD with addition of nocodazole for 90 minutes to arrest cells in mitosis. Cells were then placed at room temperature (RT) or 37°C for 90 minutes, and fixed during and after release from nocodazole arrest. Noc-cells in nocodazole, 10 min and 20 min are minutes after release from nocodazole arrest. Actin rings were quantified in three replicates of 100 cells per treatment type. Data are the averages with standard deviations. Asterisks, p \leq 0.05
Figure 4. The Iqg1 phosphomutant rescues actin ring formation in cdc14-1 cells.

Control cells in this experiment were of the genotype \textit{cdc14-1 GAL1-SIC1ΔNT}, and the experimental cells were \textit{cdc14-1 GAL1-SIC1ΔNT iqg1-4A}. Cells were grown overnight in media containing glucose at room temperature, then resuspended in fresh media with addition of nocodazole for 90 minutes to arrest in mitosis. Cells were then resuspended in YPGR (to overexpress \textit{SIC1}) with nocodazole and incubated at 37°C for 90 minutes, and fixed after release from nocodazole at 10 and 20 minutes. A. Actin staining was performed and the percentage of cells containing an actin ring was determined after examining one hundred cells for each strain at each time point. Asterisks represent p values of less than 0.01 (10 minutes p = 0.0003) (20
minutes $p = 0.001$) B and C. Single plane projections of a deconvolved Z series of $cdc14-1$ (top panel) and $cdc14-1 iqg1-4A$ (bottom panel) cells stained with phalloidin and DAPI after release from nocodazole for either 10 minutes (panel B) or 20 minutes (panel C). Actin column shows phalloidin fluorescence and DNA column is DAPI staining. Arrows point to actin rings. Scale bar = 5 μm.
Figure 5. Iqg1 is recognized as a substrate by Cdc14 in vivo and in vitro. A. Co-IP of Iqg1 and a Cdc14 substrate trap mutant. 3HA-Cdc14(C283S) expressed from the GAL1 promoter was isolated from soluble protein extracts on anti-HA affinity resin and the presence of associated Iqg1-3FLAG or Iqg1-3T-3FLAG monitored by immunoblotting. Glucose conditions that suppress the GAL1 promoter were used as a negative control. G6PD is a loading control for the extract samples. B. Dephosphorylation of phosphopeptides derived from Iqg1 by Cdc14.
Synthetic phosphopeptides with phosphorylation sites at the indicated amino acid positions of Iqg1 or Acm1 were treated with purified recombinant Cdc14 under identical steady-state reaction conditions (substrate concentration, enzyme concentration, time) and the rate of dephosphorylation calculated. Under the conditions used, rate differences should reflect differences in catalytic efficiency (k_{cat}/K_m). Data are the average of 3 independent experiments and error bars are standard deviations.
Figure 6. The actomyosin ring does not contract in *iqg1-4A* mutant cells. A. The actomyosin ring does not undergo premature contraction in *iqg1-4A* cells. Live cell imaging was performed on cells expressing Myo1-GFP and Tub1-mCherry. A representative control cell is shown on the left, and a typical *iqg1-4A* cell on the right. All cells showed elongated spindles as shown before actomyosin ring contraction or disassembly occurred. B. Live cell imaging of a control cell showing contraction of the actomyosin ring. C. Live cell imaging of a *iqg1-4A* cell showing that the actomyosin dissembles, but does not contract. For both B. and C., the top panel shows Myo1-GFP signal, and the bottom panel shows the 2D fluorescence intensity of the signal. Scale bar = 2 microns. The panel on the left is T=0, which is the time point before the beginning of either contraction or disassembly. Each panel represents an image taken at one-minute intervals.
Table 1. Yeast Strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Background</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSY184</td>
<td>MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1ura3-1 IQG1-3HA::His3MX6</td>
<td>W303</td>
<td>(Ko et al., 2007)</td>
</tr>
<tr>
<td>KSY286</td>
<td>MATa ura3-1 his3-11,15 leu2-3,112 lys2-801 trp1-1Δbar1 ΔIQG1:LEU2 pGAL1-IQG1-myc, ura3</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY378</td>
<td>MATa ura3-1 his3-11,15 leu2-3,112 lys2-801 trp1-1Δbar1 ΔIQG1:LEU2 pGAL1-IQG1-myc, URA3 iqg1-4A-myc, HIS3 (pDM9)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY396</td>
<td>MATa ura3-1 his3-11,15 leu2-3,112 lys2-801 trp1-1Δbar1 ΔIQG1:LEU2 pGAL1-IQG1-myc, URA3 iqg1-4E-myc, HIS3 (pDM15)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY472</td>
<td>MATa ura3-1 his3-11,15 leu2-3,112 lys2-801 trp1-1Δbar1 ΔIQG1:LEU2 pGAL1-IQG1-myc, ura3 (pRL170) iqg1-4A-myc, HIS3 (pDM9)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY473</td>
<td>MATa ura3-1 his3-11,15 leu2-3,112 lys2-801 trp1-1Δbar1 ΔIQG1:LEU2 pGAL1-IQG1-myc, ura3 (pRL170) iqg1-4E-myc, HIS3 (pDM15)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY482</td>
<td>MATa cdc14-1 ura3 leu2 SIC1 2μ:LEU2</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY496</td>
<td>MATa ura3-1 his3-11,15 leu2-3,112 lys2-801 trp1-1Δbar1 ΔIQG1:LEU2 pGAL1-IQG1-myc, URA3 iqg1-4A-myc, HIS3 (pDM9) TUB1-mCherry:URA (pAK011)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY504</td>
<td>MATa cdc14-1 ura3 leu2 GAL-SIC1ΔNT:URA (pFM160)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY508</td>
<td>MATa ura3-1 his3-11,15 leu2-3,112 lys2-801 trp1-1Δbar1 ΔIQG1:LEU2 pGAL1-IQG1-myc, URA3 iqg1-4A-myc, HIS3 (pDM9) TUB1-mCherry:URA (pAK011) MYO1-GFP:TRP (pKT36)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY509</td>
<td>MATa ura3 leu2 his3 trp1 ade2 Δbar1 GAL1-CDC14 (pKL1341)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY510</td>
<td>MATa cdc14-1 ura3 leu2 ΔIQG1:LEU2 (pRL170) iqg1-4A, HIS3 (pDM9) GAL1-SIC1-ΔNT-myc:URA3 (pFM160)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY520</td>
<td>MATa ura3-1 his3-11,15 leu2-3,112 lys2-801 trp1-1Δbar1 ΔIQG1:LEU2 pGAL1-IQG1-myc, ura3 (pRL170) IQG1-myc, HIS3 (pTL12)</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>KSY522</td>
<td>MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1Δbar1 ΔIQG1-3HA::His3MX6</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>YKA830</td>
<td>MATa leu2::GAL1-3HA-CDC14(C283S) ura3::IQG1-3FLAG:URA3</td>
<td>W303</td>
<td>This work</td>
</tr>
<tr>
<td>YKA832</td>
<td>MATa leu2::GAL1-3HA-CDC14(C283S) ura3::IQG131-3FLAG:URA3</td>
<td>W303</td>
<td>This work</td>
</tr>
</tbody>
</table>
Table 2. Plasmids used in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pKT36</td>
<td>Myo1-GFP: TRP1 integrate with Agel</td>
<td>(Shannon and Li, 1999)</td>
</tr>
<tr>
<td>pTL12</td>
<td>IQG1-myc CEN plasmid HIS3</td>
<td>(Lippincott and Li, 1998b)</td>
</tr>
<tr>
<td>pDM9</td>
<td>iqg1-4A-myc CEN plasmid HIS3</td>
<td>This work</td>
</tr>
<tr>
<td>pDM15</td>
<td>iqg1-4E-myc CEN plasmid HIS3</td>
<td>This work</td>
</tr>
<tr>
<td>pFM160</td>
<td>GAL1-SIC1-ΔNTmyc:URA3 integrate with EcoRV</td>
<td>(Chin et al., 2012)</td>
</tr>
<tr>
<td>pKL1341</td>
<td>GAL1-CDC14:HIS integrate with Nhel</td>
<td>(Sanchez-Diaz et al., 2012)</td>
</tr>
<tr>
<td>pAK011</td>
<td>pRS306-mCherry-TUB1: URA3 integrate with ApaI</td>
<td>(Khmelinskii et al., 2007)</td>
</tr>
<tr>
<td>YEp13-SIC1</td>
<td>SIC1:LEU2 2 micron plasmid</td>
<td>(Luca et al., 2001)</td>
</tr>
<tr>
<td>pHIP082</td>
<td>iqg1-3A-3xFLAG: URA3</td>
<td>This work</td>
</tr>
<tr>
<td>pMM1</td>
<td>iqg1-4A-3xFLAG: URA3 integrated with AflIII</td>
<td>This work</td>
</tr>
</tbody>
</table>