Title: MCAK-mediated regulation of endothelial cell microtubule dynamics is mechano-sensitive to myosin-II contractility

Authors: Lauren D’Angelo, Nicole M. Myer, and Kenneth A. Myers

Lauren D’Angelo
Department of Biological Sciences
University of the Sciences in Philadelphia
Philadelphia, USA
l.dangelo@usciences.edu

Nicole M. Myer
Department of Biological Sciences
University of the Sciences in Philadelphia
Philadelphia, USA
nmyer@mail.usciences.edu

Kenneth A. Myers
Department of Biological Sciences
University of the Sciences in Philadelphia
Philadelphia, USA
k.myers@usciences.edu

CORRESPONDING AUTHOR: Kenneth A. Myers, Ph.D.

RUNNING HEAD: MCAK is mechano-sensitive to myosin-II

ABBREVIATIONS:
MCAK: mitotic centromere associated kinesin; EC: endothelial cell; ECM: extracellular matrix; PA: polyacrylamide; MT: microtubule; HUVEC: human umbilical vein endothelial cell
ABSTRACT:

Compliance and dimensionality mechanosensing, the processes by which cells sense the physical attributes of the extracellular environment (ECM), are known to drive cell branching and shape change largely through a myosin-II-mediated reorganization of the actin and microtubule (MT) cytoskeletons. Subcellular regulation of MT dynamics is spatially controlled through a Rac1-Aurora-A kinase pathway that locally inhibits the MT depolymerizing activity of MCAK, thereby promoting leading-edge MT growth and cell polarization. These results suggest that the regulation of MT growth dynamics is intimately linked to physical engagement of the cell with the ECM. Here, we tested the hypothesis that the MCAK contributes to compliance and dimensionality mechanosensing-mediated regulation of MT growth dynamics through a myosin-II-dependent signaling pathway. Endothelial cells were cultured on collagen-coupled stiff or compliant polyacrylamide ECMs to examine the effects of MCAK expression on MT growth dynamics and HUVEC branching morphology. Our results identify that MCAK promotes fast MT growth speeds in ECs cultured on compliant 2D ECMs, but promotes slow MT growth speeds in ECs cultured on compliant 3D ECMs, and these effects are myosin-II-dependent. Furthermore, we find that 3D ECM engagement uncouples MCAK-mediated regulation of MT growth persistence from myosin-II-mediated regulation of growth persistence specifically within EC branched protrusions.

INTRODUCTION

Cell shape, morphology, and migration behaviors are known to respond to the physical and mechanical attributes of the extracellular environment (Pelham and Wang, 1997; Wang, 1998; Hu et al., 2002; Beningo et al., 2004; Fischer et al., 2009; Kniazeva and Putnam, 2009; Bailey et al., 2011; Ghibaudo et al., 2011; Myers et al., 2011; Barthelemi et al., 2012; Mousavi et al., 2013; Aung et al., 2014; Bae et al., 2014; Edgar et al., 2014a; Underwood et al., 2014; Carey et al., 2015; Case and Waterman, 2015; Doyle et al., 2015). On compliant extracellular matrices (ECMs), cells become less rigid, extend numerous branched protrusions, and typically migrate
quickly but with reduced directional persistence (Pelham and Wang, 1997); (Lo et al., 2000); (Myers et al., 2011). In comparison, cells cultured on less compliant ECMs generate fewer branched protrusions and display slower, more directionally persistent migration patterns (Fischer et al., 2009; Doyle and Yamada, 2015; Lee et al., 2016). In addition to matrix compliance, 3D ECM engagement also contributes to significant morphological adaptations of various cell types compared to cell culture in 2D ECMs (Doyle and Yamada, 2015; Kutys and Yamada, 2015; Riching and Keely, 2015). Experimental outcomes of 3D ECM engagement include enhanced cell branching and reduced migration velocities (Beningo et al., 2004); (Fischer et al., 2009), and these effects are well known to be the result of cell engagement of the ECM on both the dorsal and ventral surfaces (Fischer et al., 2009; Doyle and Yamada, 2015). Thus, experimental evidence suggests that cells cultured in a 3D ECM display an enhanced propensity for ECM engagement that creates enhanced physical / mechanical cues promoting branched morphologies that are specific to a 3D environment and involve increased cell-ECM contacts (Fischer et al., 2009; Edgar et al., 2014a; Edgar et al., 2014b; Doyle et al., 2015; Doyle and Yamada, 2015; Thievessen et al., 2015). In turn, enhanced cell-ECM contacts may reduce productive, directional cell migration and thereby inhibit the development of a polarized morphology. Additionally, the combination of ECM compliance and dimensionality mechanosensing further complicates cellular navigation through a complex extracellular environment, although the effects of compliance and dimensionality have been found to contribute synergistically to branching morphology and migration behaviors (Fischer et al., 2009).

ECM compliance and dimensionality mechanosensing drives cell branching largely through reorganization of the actin-myosin and microtubule (MT) cytoskeletons (Pelham and Wang, 1997; Myers et al., 2011). Cell culture on stiff 2D ECMs promotes slow, long-lived MT growth and reduced cell branching, while cell culture on soft 2D ECMs promotes fast, short-lived MT growth and increased cell branching. Additionally, the cellular response to matrix rigidity and density is known to modulate force transmission and transduction via a biphasic force relationship on substrates of intermediate compliance (~7-10 kPa), further highlighting the importance of mechano-physical signaling cues as a mediator of cytoskeletal dynamics.
(Elosegui-Artola et al., 2016). The effects of substrate stiffness on MT growth dynamics occur through a myosin-II-dependent pathway. Interestingly, when cells are cultured on 3D ECMs, the MT growth persistence becomes uniformly long and is no longer sensitive to ECM stiffness-mediated down-regulation of myosin-II (Myers et al., 2011). These data suggest that engagement of a 3D ECM induces differential control of the dynamic instability of a subset of the total MT array. Further, these data suggest that distinct signaling pathways regulate MT growth speed and lifetime depending on whether cells are cultured in 2D or 3D ECMs.

MT dynamics are regulated by families of MT-associated proteins (MAPs) capable of enhancing MT growth or of promoting MT stability through inhibition of MT disassembly. The kinesin-13 family of MAPs consists of protein members that function as MT catastrophe factors or depolymerases (Howard and Hyman, 2007). The most well studied member of the kinesin-13 MAPs is termed Mitotic Centromere Associated Kinesin (MCAK). MCAK functions to enzymatically catalyze MT disassembly, a process that is critical to proper spindle formation and is regulated during spindle disassembly in order to drive the correct separation of sister chromatids during mitosis (Gorbsky, 2004; Helenius et al., 2006; Knowlton et al., 2009). During interphase, MCAK activity is spatially regulated at the leading and trailing edge of endothelial cells through a Rac1-Aurora-A kinase pathway. Within this pathway, enhanced Rac1 activation within leading edge lamellipodia of polarized endothelial cells results in localized activation of Aurora-A kinase, which directly targets and phosphorylates MCAK to inhibit MCAK’s MT depolymerase activity. The outcome of Aurora-A-mediated phospho-inhibition of MCAK is enhanced MT growth within the leading edge of the cell, which further promotes leading-edge polarization and directional migration of endothelial cells during wound-healing (Braun et al., 2014).

The finding that MCAK is locally inhibited within the leading edge in order promote trailing edge MT disassembly, coupled with the finding that 3D ECM engagement induces significant increases in MT growth lifetimes that no longer respond to ECM compliance mechanosensing, suggests that MCAK activity may be spatially regulated by ECM compliance and dimensionality-regulated signaling pathways. Here, tested the hypothesis that MCAK
contributes to compliance and dimensionality mechanosensing-mediated regulation of MT growth dynamics through a myosin-II-dependent signaling pathway. Human Umbilical Vein Endothelial Cells (HUVECs) were cultured on stiff versus compliant (55 kPa vs. 0.7 kPa) collagen-coupled polyacrylamide (PA) ECMs to examine the effects of MCAK expression on MT growth dynamics and HUVEC branching morphology. Our results identify that MCAK promotes fast MT growth speeds in ECs cultured on compliant 2D ECMs, but promotes reduced MT growth speeds in ECs cultured on compliant 3D ECMs. In 2D ECMs, MCAK-mediated regulation of MT growth speed and growth persistence is myosin-II-dependent. Comparison of EC branches and non-branched regions of the cell reveals that MT growth lifetimes are long-lived within branches, and that 3D ECM engagement uncouples MCAK-mediated regulation of MT growth persistence from myosin-II-mediated regulation of growth persistence specifically within EC branched protrusions.

RESULTS

In 2D ECMs, MCAK increases MT growth speed and eliminates the sensitivity of MT growth persistence to ECM compliance.

Previous studies have demonstrated that increasing the compliance (a.k.a. softness) of the ECM resulted in increased MT growth speeds and reduced MT growth lifetimes (a.k.a. “persistence”; Myers et al., 2011), suggesting that ECM compliance mechanosensing may function by signaling to proteins that regulate MT growth dynamics. To test the hypothesis that MCAK-mediated regulation of MT dynamics responds to ECM compliance mechanosensing, we measured MT dynamics in control HUVECs and compared them to HUVECs overexpressing MCAK that were cultured on either stiff (55kPa) or soft (0.7kPa) type-1-collagen-coupled polyacrylamide (PA) ECMs (Figure 1 and Figure S1). MT dynamics were visualized by tracking mApple EB3, a marker of MT plus-end growth, and MT growth speeds and MT growth lifetimes were analyzed using plusTipTracker software (Matov et al., 2010; Applegate et al., 2011). MT plusTipTracker software detects and tracks fluorescently-labeled MT plus ends to calculate MT
growth speeds and lifetimes (Figure 1C-D). plusTipTracker can additionally generate image overlays of MT plus-end motion tracks, with the magnitudes of MT growth speed and growth lifetime color-coded to allow qualitative visualization of differences in these values throughout the cell (Figure 1A-B). Thresholds for classifying EB3 tracks as “slow” versus “fast” or “short-lived” versus “long-lived” were based on the mean value for each parameter from the entire population of cells analyzed over all experimental conditions (Figure 1B). MT dynamics for individual cells were averaged within experimental groups and then the means were statistically analyzed between groups (Figure S2).

Using this approach, comparison of control HUVECs on stiff (55kPa PA) 2D type-1 collagen ECMs revealed that MCAK expression had no effect on MT growth speeds. Comparison of MT growth lifetimes revealed a significant reduction in control HUVECs cultured on 0.7kPa (9.39 sec. versus 8.05 sec.; Figure 1D), a result consistent with previous investigations (Myers et al., 2011). Comparison of stiff and compliant ECMs (55kPa PA and 0.7kPa PA) revealed that MCAK expression promoted fast MT growth (Figure 1A, yellow and blue tracks; Figure 1C) and eliminated the effects of compliance mechanosensing on MT growth lifetime (Figure 1D). The number of MT growth tracks did not differ substantially in response to ECM compliance, but the number of growth tracks was reduced by MCAK expression (Figure 1E), suggesting that compliance mechanosensing alone does not alter the ability of the cell to grow microtubules.

Together, these results suggest that MCAK increases the speed of growing MTs on soft ECMs while eliminating the sensitivity of MT growth lifetimes to ECM compliance, in addition to reducing the total number of MT growth tracks within the cell.

In 2D ECMs, MCAK-mediated effects on MT growth speed and growth persistence are myosin-II-dependent.

Cell engagement of compliant ECMs is known to cause the down-regulation of myosin-II contractility (Discher et al., 2005; Fischer et al., 2009) and this results in increased MT growth speeds and reduced MT growth lifetimes (Myers et al., 2011). Therefore, we sought to
determine the role of myosin-II contractility on MCAK-mediated regulation of MT growth dynamics in response to ECM compliance mechanosensing. To do this, HUVECs were treated with blebbistatin (20 µM) 60-min prior to imaging and were maintained in blebbistatin-containing medium throughout the course of the experiment. On stiff (55kPa PA) ECMs, inhibition of myosin-II contractility in control HUVECs resulted in fast, short-lived MT growth (growth speed: 10.5 vs. 14.8 µm/min; growth lifetime: 9.39 vs. 8.91 secs.; compare Figures 1C-D and 2B-C). The combination of blebbistatin treatment and MCAK-expression reduced MT growth speeds in HUVECs cultured on stiff ECMs and had no significant effect on growth speeds in HUVECs cultured on soft ECMs (Figure 2B). This effect was opposite of that measured for control cells (see Figure 1C), where MCAK promoted increased MT growth speeds in response to compliance mechanosensing. These data support the finding that MCAK functions to increase MT growth speeds and further suggest that myosin-II contractility is required for MCAK-mediated increases in MT growth speed.

Treatment with 20µM blebbistatin revealed that MT growth lifetimes in control cells were reduced on stiff (55kPa) and soft (0.7kPa) ECMs (Figure 1D and 2C), a result similar to previously published investigations (Myers et al., 2011). In the presence of myosin-II contractility, MCAK expression resulted in a loss of compliance-mediated regulation of MT growth lifetimes (Figure 1D); however, treatment with blebbistatin in MCAK expressing HUVECs resulted in MT growth lifetimes that were similar to controls, independent of ECM compliance, yet significantly shorter-lived on soft ECMs only in MCAK expressing cells (Figure 2C). These results suggest that MCAK normally functions by promoting fast MT growth in response to compliance mechanosensing. In the presence of myosin-II contractility, MCAK eliminates sensitivity to MT growth lifetimes (Figure 1C), while in the absence of myosin-II contractility, MCAK promotes fast and short-lived (a.k.a. “dynamic”) MT growth. Together, these results suggest that myosin-II contractility inhibits MCAK-mediated regulation of MT dynamics, resulting in slow and long-lived MT growth.

Quantification of the number of MT growth tracks revealed that blebbistatin treatment reduced the total number of MT growth tracks as stiffness is reduced in both control and MCAK
expressing cells (2D), and resulted in an increase in growth tracks on stiff ECMs that was eliminated by MCAK in the presence of blebbistatin (compare Figures 1E and 2D). These results further suggest that myosin-II contractility may inhibit MCAK, and in doing so may function as an important contributor to the regulation of MT assembly. Closer comparison of the effects of blebbistatin and untreated cells on MT growth speeds and growth lifetimes, specifically in MCAK-expressing cells, revealed that in the presence of myosin-II contractility (Figure 2E and F; untreated), MCAK responds to increasing compliance by promoting increasingly fast and short-lived bouts of MT growth. However, in the absence of myosin-II contractility (Figure 2E and F; blebbistatin), MCAK responds to increasing compliance by promoting increasingly slow and increasingly short-lived bouts of MT growth. This result further supports the conclusion that mediated effects on MT growth dynamics are responsive to ECM compliance mechanosensing and are modulated by a myosin-II-dependent signaling pathway that promotes slow and long-lived MT growth.

MCAK-mediated regulation of MT dynamics is regionally sensitive to myosin-II contractility in branched protrusions in 2D ECMs.

Substrate stiffness has been shown to modulate cell branching morphogenesis (Fischer *et al.*, 2009). Additionally, regional differences in MT dynamics within cell branches and the cell body have been characterized within endothelial cells (Myers *et al.*, 2011). To determine the role of MCAK in regional modulation of MT dynamics on stiff versus soft substrates we analyzed MT dynamics in cell branches in untreated and blebbistatin-treated HUVECs.

Similar to the whole cell analysis (see Figure 1), analysis of MT growth dynamics within branched regions revealed that HUVECs cultured on compliant ECMs (0.7kPa) had significantly increased MT growth speeds as compared to stiff ECMs (55kPa) in MCAK-expressing cells (Figure 3A; untreated). Blebbistatin treatment increased MT growth speeds on stiff ECMs but not on compliant ECMs, while blebbistatin treatment combined with MCAK expression reduced MT growth speeds compared to MCAK expression alone on either stiff or soft ECMs. These
data suggest that, similar to whole cell data analysis, within branched protrusions, MCAK-mediated regulation of MT growth speeds is dependent on myosin-II contractility.

Analysis of MT growth lifetimes revealed that they were significantly longer-lived within HUVEC branches than in the whole cell (compare Figure 1D and 3B), and also revealed that MT growth lifetimes within branches were unaffected by ECM stiffness or MCAK expression in untreated cells. However, pharmacologic inhibition of myosin-II by blebbistatin treatment caused a significant reduction in MT growth lifetimes on soft ECMs (0.7kPa Blebb compared to 55kPa Blebb) that was further reduced by MCAK expression (Figure 3B). These data suggest that MCAK-mediated regulation of MT growth lifetimes in HUVEC branches is sensitive to myosin-II contractility.

Because MCAK functions as a MT depolymerizing enzyme, it was expected that MCAK expressing HUVECs would have a reduced number of EB3-labeled (a.k.a. “growing”) MTs. Analysis of total MT growth events revealed that there were fewer MT growth tracks in MCAK expressing cells under all conditions within branched regions of the cell. In addition, total MT growth events were reduced within branches as compared to the whole cell in both control and MCAK expressing cells. This is not surprising given that the area of cell branches is less than that of the whole cell and that MT growth events within branches are a component of the whole cell MT growth tracks. In control HUVECs cultured on stiff ECMs, myosin-II inhibition with blebbistatin resulted in an increase in the number of growth tracks by 34.1%, while on soft ECMs myosin-II inhibition reduced the number of MT growth tracks by 33.8%. Compared to untreated cells, combined myosin-II inhibition and MCAK expression increased the number of MT growth tracks on stiff ECMs (18.4%) but reduced the number of growth tracks on soft ECMs (48.1%; Figure 3C). These data are consistent with the effects of MCAK and myosin-II on whole cell growth track number, suggesting that within EC branched protrusions, the number of MT growth events is controlled via myosin-II-dependent regulation of MT growth.

Analysis of branching morphology revealed that ECM compliance induced a 4-fold increase in branch number and that MCAK inhibited this increase (reduced to 1.5-fold; Table 1).
Inhibition of myosin II contractility resulted in a large increase in branch number in control cells, particularly on stiff ECMs (55kPa = 7.5-fold; 0.7kPa = 1.8-fold increase). Following myosin-II inhibition, branch numbers were similar in control and MCAK cells as well as on 55kPa ECMs and 0.7kPa ECMs. Branch lengths were similarly reduced by MCAK or by blebbistatin treatment on stiff ECMs but were generally shorter and less influenced by either treatment on compliant ECMs. Thus, branching morphology data suggest that MCAK-mediated regulation of MT dynamics in HUVEC branches is sensitive to myosin-II contractility.

Comparison of MCAK expressing HUVECs revealed that blebbistatin treatment resulted in a significant increase in MT growth speeds on stiff ECMs but resulted in a significant reduction in growth speeds within the branches of HUVECs cultured on compliant substrates (Figure 3D). MCAK’s effects on MT growth lifetimes were not responsive to myosin-II inhibition on stiff ECMs, but were reduced on compliant ECMs (Figure 3E), resulting in the slowest growing and shortest-lived MT growth excursions. These results suggest that within MCAK expressing HUVEC branches on 2D ECMs, compliance mechanosensing-mediated down-regulation of myosin-II contractility promotes increased MT growth speeds without changing MT growth lifetimes. Additionally, these results suggest that the total loss of myosin-II contractility (blebbistatin) relieves MCAK inhibition, thereby enhancing MT dynamic instability and increasing the overall number of branched protrusions (Figure 3D, E, and Table 1).

3D ECM engagement makes MT growth persistence insensitive to compliance and MCAK.

MT dynamics exhibit differential behaviors in response to physical interactions with the ECM. Dimensionality (2D vs 3D) has been shown to modulate ECM compliance-mediated changes in MT dynamics and cell branching in distinct ways. For example, in 2D ECMs, myosin-II contractility has been shown to regulate MT growth speed, growth lifetime, and branching; while in 3D ECMs, MT growth lifetime was mediated in a myosin-II-independent manner (Myers et al., 2011). We sought to determine whether ECM dimensionality mechanosensing effects on MT growth dynamics were mediated through a MCAK-dependent signaling pathway and
whether this was dependent or independent of myosin-II contractility. We compared MT dynamics and branching morphogenesis in HUVECs grown in 3D “sandwich cultures” where both the dorsal and ventral surface of the cell is surrounded by ECM protein (Fischer et al., 2009). This type of cell culture system allows for high resolution imaging of ECs when the ventral cell surface is engaged with ECM coupled to PA of varying stiffness (Fischer et al., 2009; Myers et al., 2011).

In 3D ECMs, MT growth speeds were sensitive to ECM compliance in an MCAK-expression-dependent manner. Compared to control, on stiff (55kPa) 3D ECMs, MCAK expression had no effect on MT growth speed or lifetime, while on compliant ECMs (0.7kPa), increased MCAK expression resulted in significantly reduced MT growth speeds (Figure 4A, B). MT growth lifetimes were similar on stiff and compliant ECMs in both control and MCAK expressing ECs (Figure 4A, C). These data support previously published findings that MT growth lifetimes are insensitive to ECM compliance mechanosensing (Figure 4C; Myers et al., 2011). Here, we additionally report that MT growth lifetimes are similarly insensitive to MCAK expression in 3D ECMs (Figure 4C).

In control HUVECs, MT growth tracks were reduced compared to 2D on stiff (55kPa) and soft (0.7kPa) ECMs, while in MCAK-expressing HUVECs, the number of growth tracks were similar to MCAK-expressing HUVECs in 2D (compare Figures 1D and 4D), suggesting that MCAK maintains the ability to regulate the capacity of the cells to assemble MTs in 3D ECMs, but no longer modulates MT growth lifetimes in response to ECM compliance.

In 3D ECMs, MCAK-mediated regulation of MT growth speeds and the number of MT growth events is myosin-II-dependent.

To determine whether the effects of MCAK on MT growth speeds and growth lifetimes in 3D ECMs were dependent on myosin-II contractility, we measured MT dynamics in HUVECs cultured in 3D sandwich gels and treated with blebbistatin (20 µM). On stiff (55kPa) and soft
(0.7kPa) 3D ECMs, inhibition of myosin-II contractility resulted in reduced MT growth speeds (compare Figure 4B and 5B). Compared to control, MT growth speeds were significantly reduced by MCAK expression only on soft 3D ECMs (Figure 5B). On stiff and soft 3D ECMs, MT growth lifetimes were similar in the presence and absence of myosin-II contractility (compare Figure 4C and 5C), but remained insensitive to compliance mechanosensing and MCAK expression (Figure 5C).

Similar to 2D ECMs, myosin-II inhibition increased the number of MT growth tracks on stiff ECMs. However, unlike in 2D, on soft 3D ECMs (Figure 5D, 0.7kPa), myosin-II inhibition resulted in an increase in the number of MT growth tracks measured that was similar in control and in MCAK expressing cells (control = 267% increase; MCAK = 280% increase; compare Figure 4D and Figure 5D). These data suggest that in 3D ECMs, MCAK-mediated inhibition of MT growth track number remains sensitive to myosin-II contractility. Taken together with MT growth lifetime data, these results suggest the possibility that, in the presence of myosin-II contractility, MCAK may be actively depolymerizing non-growing (stable) MTs that would not normally be detected by tracking EB3 dynamics. Further, these results identify that 3D ECM engagement inhibits MCAK-mediated depolymerizing of growing MTs in a myosin-II dependent manner.

A closer comparison of the effects of MCAK expression in untreated and blebbistatin-treated cells on MT growth speeds and growth lifetimes revealed that in the absence of myosin-II contractility, MCAK was sensitive to compliant substrates (0.7kPa), promoting slow bouts of MT growth in blebbistatin-treated HUVECs (Figure 5E), with no effect on MT growth lifetimes (Figure 5F). These results suggest that in 3D ECMs, MCAK has no effect on MT growth lifetimes, but promotes slow MT growth in response to increased ECM compliance in a myosin-II-dependent manner.

MT growth speed, but not growth persistence, is regulated through an MCAK and myosin-II-dependent signaling pathway within branched protrusions in 3D ECMs.
Analysis of MT growth dynamics within branched regions of cells revealed that HUVECs cultured on 3D stiff (55kPa) versus compliant ECMs (0.7kPa) had similar MT growth speeds and MCAK expression reduced MT growth speeds on compliant ECMs resulting in the slowest MT growth speeds on 0.7kPa ECMs (6.17 µm/min; Figure 6A). Blebbistatin treatment reduced MT growth speeds on all ECMs, while blebbistatin treatment combined with MCAK expression furthered this effect, resulting in MT growth speeds that were significantly reduced compared to untreated and compared to blebbistatin control, specifically on soft ECMs (Figure 6A). These results suggest that similar to whole-cell growth dynamics, within branched protrusions MCAK promotes slow MT growth in response to increased ECM compliance in a myosin-II-dependent manner.

Similar to results from 2D ECMs, MT growth lifetimes were significantly longer-lived within branched regions of the cell than within whole cell MT growth lifetimes (compare Figure 4C and 6B). However, unlike in 2D ECMs there was no statistically significant change in MT growth lifetimes that resulted from either 3D ECM compliance mechanosensing, from MCAK expression, or in response to myosin-II inhibition by blebbistatin (Figure 6B). These data suggest that, following 3D ECM engagement, MT growth lifetimes within EC branches are regulated through a myosin-II-independent signaling pathway.

Analysis of total MT growth events revealed that blebbistatin treatment increased the number of growth tracks on all stiffnesses, and that MCAK reduced the number of growth tracks in blebbistatin-treated cells on stiff, but not on soft ECMs. MT growth track number was similar within the branches of HUVECs cultured on 2D versus 3D ECMs in both control and MCAK overexpression (compare Figure 3C and 6C). 3D growth tracks within branched protrusions accounted for 30.3% (55kPa) and 27.4% (0.7kPa) of the whole cell MT track count.

Analysis of branching morphology in HUVECs cultured on stiff (55kPa) versus soft (0.7kPa) 3D ECMs demonstrated that in control untreated cells there was a 2-fold increase in the number of branched protrusions on soft (0.7kPa) ECMs. On stiff ECMs, MCAK expression similarly caused a 2-fold increase in the number of branched protrusions, but this effect was
compliance mechanosensing-independent (Table 2). Additionally, MCAK expression resulted in reduced mean branch length on all ECM stiffnesses (avg. = 2.82 μm shorter; Table 2). Blebbistatin treatment dramatically increased the total number of branches (3.5-fold on 55kPa; 2.1-fold on 0.7kPa), while MCAK expression in blebbistatin-treated cells reduced branch number, with the greatest effect on compliant ECMs (3-fold reduced, Table 2). These data suggest that, in 3D ECMs, MCAK functions to inhibit the number and length of branched protrusions by promoting slow MT growth, and this function is sensitive to both compliance mechanosensing and direct inhibition of myosin-II with blebbistatin.

Within HUVEC branches in 3D ECMs, comparison of MCAK expressing HUVECs revealed that blebbistatin treatment resulted in a significant reduction in MT growth speeds on soft ECMs (Figure 6D), and that similar to whole cell MT dynamics, MCAK expression did not modify MT growth lifetimes within branches (Figure 6E). These data show that following 3D ECM engagement, MCAK is ineffective in regulating MT growth lifetimes while MCAK-mediated effects on MT growth speeds are regulated similarly by myosin-II contractility within the whole-cell regions and within 3D branched regions of the cell.

Compliance mechanosensing promotes fast MT growth in a MCAK-dependent-manner in both 2D and 3D ECMs.

To determine the contribution of MCAK to regulating MT growth dynamics in response to ECM dimensionality mechanosensing, we compared MT growth speeds and MT growth lifetimes in HUVECs cultured on stiff (55kPa) versus compliant (0.7kPa) 2D and 3D ECMs in untreated and blebbistatin treated conditions (Figure 7). Analysis of whole cell MT dynamics revealed that MT growth speeds were significantly faster in 2D ECMs compared to 3D ECMs (Figure 7A). Inhibition of myosin-II contractility by treatment with blebbistatin enhanced the effects of ECM dimensionality mechanosensing by promoting the fastest MT growth speeds on 2D ECMs. However, comparison of 3D untreated versus 3D blebbistatin-treated HUVECs revealed that myosin-II inhibition had no effect on MT growth speeds on 3D ECMs, independent
of compliance (compare 3D untreated, Figure 7A, with 3D blebbistatin, Figure 7B). Addition of MCAK promoted slow MT growth in all conditions except on compliant 2D ECMs in the presence of myosin-II contractility, where it promoted slightly faster MT growth speeds. Despite this increase, the measured values for growth speeds under these conditions were found to be statistically similar. These data suggest that MT growth speeds are sensitive to myosin-II contractility only in 2D ECMs but are sensitive to MCAK in both 2D and 3D ECMs. Further, these data support a model in which MCAK-mediated regulation of MT growth speeds is myosin-II dependent in 2D ECMs and myosin-II independent in 3D ECMs.

Evaluation of 2D versus 3D whole cell MT growth lifetimes revealed that growth lifetimes were the longest-lived on stiff 2D ECMs and were significantly reduced via dimensionality mechanosensing on stiff 3D ECMs. This dimensionality-driven reduction in MT growth lifetimes was independent of myosin-II contractility (Figure 7C, D). Comparison of MCAK’s effects on MT growth lifetimes in 2D and 3D ECMs revealed that MCAK expression reduced MT growth lifetimes on compliant ECMs in response to 3D ECM engagement, and this effect was myosin-II-dependent (Figure 7C, D).

3D ECM engagement uncouples MCAK-mediated regulation of MT growth persistence from myosin-II-mediated regulation of MT growth persistence within branched protrusions.

Comparison of ECM compliance and dimensionality mechanosensing on EC branching morphology revealed that 3D ECM engagement resulted in a dramatic increase in total branch number (Table 3). Both the fold change and the total branch number(s) were similarly increased in ECs on stiff ECMs (Table 3A-B) or on compliant ECMs (Table 3C-D), and while MCAK expression did result in an increase in total branch number on stiff 3D ECMs, it did not substantially modify the fold change in branch number (Table 3A-D, untreated). Pharmacologic inhibition of myosin-II with blebbistatin induced a large but similar relative increase in branch number in control 2D and 3D ECMs (55kPa 2D/3D mean fold increase = 5.55; 0.7kPa 2D/3D mean fold increase = 1.93). Blebbistatin-induced increases in branching were independent of
compliance, and the combination of blebbistatin and MCAK expression had a relatively small
effect of reducing branch number on 2D 55kPa, 3D 55kPa, or 2D 0.7kPa ECMs (reduced 13.3%,
15.8%, and 7.1%, respectively). However, only on compliant 3D ECMs did the combination of
blebbistatin and MCAK promote a substantial reduction in branch number (reduced 66.7%).
These data suggest that EC branching is affected by MCAK only on compliant 3D ECMs, in the
absence of myosin-II contractility.

Regional examination of MT growth lifetimes in EC branches revealed that the effects of
ECM dimensionality mechanosensing were similar comparing the whole cell with HUVEC
branched regions (Figure 7). Within branches, MT growth speeds were reduced by engagement
of stiff or soft 3D ECMs. In 2D branches, MCAK expression promoted faster MT growth speeds,
while in 3D branches, MCAK expression had no effect on MT growth speeds (Figure 7E).
Treatment with blebbistatin caused MT growth speeds to increase by an average of 38.1% in 2D
ECMs, and MCAK expression inhibited the blebbistatin-induced increase in MT growth speeds
(Figure 7E, F), a result that mimicked the whole cell MT growth speed data.

MT growth lifetimes within branches were extremely long-lived and uniform under all
conditions measured (Figure 7G-H). This result was unlike the whole cell result where 3D ECM
engagement reduced MT growth lifetimes in an ECM compliance-dependent manner. Also
dissimilar to whole cell analysis of MT growth lifetimes was the finding that MCAK expressing
cells were insensitive to myosin-II inhibition within branched protrusions (Figure 7H). Together,
these results suggest that within EC branched protrusions, the regulation of MT growth
lifetimes are MCAK and myosin-II-independent both in 2D and 3D ECMs, while the speed of MT
assembly is dependent upon both MCAK and myosin-II in 2D ECMs, but is independent of
myosin-II upon 3D ECM engagement.
DISCUSSION

The physical and mechanical attributes of the ECM impact cellular morphology and cytoskeletal behaviors. Substrate compliance and dimensionality are known to induce changes in MT dynamic instability that, in turn, modify cell branching morphology and endothelial cell migration (Myers et al., 2011). Control of cell shape is mediated both by the MT cytoskeleton and actin-myosin contractility (Wang, 1998; Dent and Kalil, 2001; Rodriguez et al., 2003; Hasaka et al., 2004; Myers et al., 2006). Global inhibition of myosin-II promotes excessive cell branching and inhibits directional migration (Connolly et al., 2002; Myers et al., 2011; Elliott et al., 2015), while localized myosin-II inhibition is sufficient to promote branch initiation (Fischer et al., 2009). Additionally, myosin-II is down-regulated in response to 3D ECM engagement as well as in response to increased ECM compliance, such that on compliant 3D ECMs cells have the greatest number of branched protrusions (Fischer et al., 2009; Myers et al., 2011; Doyle et al., 2015; Petrie and Yamada, 2015). More recently, it was also identified that MT growth speeds and growth lifetimes are sensitive to myosin-II when HUVECs engage 2D ECMs; however, engagement of a 3D ECM results in MT growth lifetimes that are myosin-II-independent (Myers et al., 2011).

It is well understood that MT dynamics are controlled by association with MAPs that function to modulate MT growth and disassembly through a wide array of activities, the majority of which have been characterized and have allowed the organization of MAPs into distinct functional families (Avila et al., 1994; Mandelkow and Mandelkow, 1995; Marx et al., 2006; Howard and Hyman, 2007; Yu et al., 2015; Nogales and Zhang, 2016). MCAK, a kinesin-13 MAP responsible for inducing MT disassembly, has been shown to associate with growing MT plus ends, leading to questions as to how MCAK’s MT depolymerizing activity is regulated (Kline-Smith and Walczak, 2002; Ovechkina et al., 2002; Andrews et al., 2004; Moore and Wordeman, 2004; Moore et al., 2005; Moores et al., 2006; Manning et al., 2007; Zhang et al., 2007; Hertzer and Walczak, 2008; Zhang et al., 2008; Braun et al., 2014). Recent evidence shows that the depolymerase activity of MCAK is spatio-temporally inhibited within the leading edges but not within the trailing edges of polarized wound-edge HUVECs in order to drive polarized MT growth toward the leading edge (Braun et al., 2014). The finding that MCAK is locally inhibited to establish polarized regulation of MT growth dynamics led us to investigate
the effects of MCAK on MT dynamics as they engage ECMs of varying compliance and dimensionality.

By evaluating MT growth dynamics and HUVEC branching morphology on stiff (55 kPa) versus compliant (0.7 kPa) 2D and 3D collagen-coupled PA ECMs, we set out to determine if ECM mechanosensing-induced control of MT growth dynamics is regulated by the microtubule depolymerizing enzyme, MCAK and to identify if MCAK-dependent regulation of MT growth dynamics functions through a myosin-II-dependent or –independent mechanism. Our results produced five main advances. First, we demonstrated that MCAK is a target of ECM mechanosensing-mediated signaling in response to both ECM compliance and ECM dimensionality. Second, we identified that MCAK is one MAP that is responsible for distinguishing between the previously identified myosin-II-dependent and myosin-II-independent regulation of MT growth lifetimes (Myers et al., 2011). Third, we showed that MT growth speeds, but not growth lifetimes are regulated through an MCAK and myosin-II-dependent signaling pathway within EC branched protrusions in 3D ECMs. Fourth, we found that compliance mechanosensing promotes fast MT growth and is MCAK-dependent in both 2D and 3D ECMs. Finally, we demonstrated that 3D ECM engagement uncouples MCAK-mediated regulation of MT growth persistence from myosin-II-mediated regulation of MT growth persistence within branched protrusions. Thus, one important mechanism of compliance and dimensionality mechanosensing-mediated regulation of MT growth dynamics is achieved through myosin-II-dependent regulation of MCAK, which functions to guide branching morphogenesis in response to HUVEC engagement of physically complex ECMs.

These results provide insight regarding how ECM engagement is able to transmit physical, mechanosensitive signaling from the actin-myosin sensing components of the cell to at least one component of the MT-associated regulatory machinery, in this case, MCAK. On 2D ECMs, compliance mechanosensing in the presence of MCAK results in fast MT growth with no effect on MT growth persistence. There is also a large reduction in MT growth track number, suggesting that in addition to regulating MT growth speeds, MCAK may be working to prevent new MT growth. Inhibition of myosin-II with blebbistatin results in slow and short-lived MT
growth that is MCAK dependent, suggesting that myosin-II contractility is important for MCAK’s
effects on MT growth dynamics during EC compliance mechanosensing in 2D collagen ECMs.

Comparison of compliance mechanosensing in ECs cultured in 2D ECMs, or in ECs
cultured in 3D ECMs reveals that the introduction of exogenous MCAK results in compliance-
dependent changes in MT growth speed, but does not significantly affect MT growth lifetimes,
suggesting that MCAK-mediated regulation of MT growth speed is sensitive to ECM compliance,
but MCAK-mediated regulation of MT growth persistence is insensitive to ECM compliance.
Because MCAK is a MT depolymerizing enzyme, it was our expectation that the primary effects
of MCAK manipulation would be effects on the lifetime of MT growth rather than effects on the
speed of MT growth. Indeed, using in-vitro reconstitution assays, previous studies have shown
that titration of MCAK expression does not dramatically influence MT growth speed
(Montenegro Gouveia et al., 2010; Gardner et al., 2011). Similar to these in-vitro findings, we
find that in living cells cultured on the stiffest 2D ECMs (55kPa), MCAK expression does not
modify MT growth speed (Figure 1A, C). However, when cells are forced to adapt to ECMs of
increasing compliance and/or dimensionality, we find that MT growth speeds are dramatically
altered by MCAK expression. These data support the notion that ECM compliance
mechanosensing controls MT growth dynamics through a MCAK-dependent signaling pathway.

Our data also reveal that the consequences of MCAK expression on MT growth speeds
are antagonistically modified when ECM compliance is modulated in 3D ECMs. When HUVECs
engage a 2D collagen ECM, for example, MT growth speeds increase in response to increasing
ECM compliance in a MCAK-dependent manner (Figure 1). However, when HUVECs engage a 3D
collagen ECM, MCAK induces MT growth speeds to decrease in response to increasing ECM
compliance (Figure 4). This trend is consistent when comparing 2D versus 3D MT dynamics
within the whole cell and within cell branches, despite branches having significantly longer-
lived MT growth under all conditions of ECM compliance and dimensionality (Figures 3, 6, and
7).
Comparison of dimensionality mechanosensing in 2D versus 3D ECMs (Figure 7) reveals that introduction of exogenous MCAK is sufficient to reduce MT growth lifetimes following 3D ECM engagement on compliant substrates, and that this effect is eliminated by pharmacologic inhibition of myosin-II. The finding that the MCAK-dependent effect is specific to the cell body, and is eliminated within HUVEC branches in either the presence or in the absence of myosin-II contractility (Figure 7C, G versus Figure 7D,H), suggests that 3D ECM engagement uncouples MCAK-mediated regulation of MT growth persistence from myosin-II-mediated regulation of MT growth persistence within branched protrusions. These data support the notion that MCAK is a critical regulator of regional MT dynamic instability. Further, these data suggest that MCAK-mediated regional regulation of MT dynamics distinguishes subsets of the MT cytoskeleton within the cell body and within the cell branches, and uniquely regulates MT dynamic instability within these sub-cellular in response to cell engagement of the ECM.

Regional analysis of MT growth persistence also revealed that MT growth lifetimes are significantly longer-lived within cell branches under all conditions of compliance, dimensionality, or myosin-II inhibition. These data support previous studies of MT growth lifetimes within the branches of endothelial cells (Myers et al., 2011), but also suggest that persistent MT growth within EC branches is not solely dependent upon myosin-II contractility, nor is it entirely dependent upon MCAK-mediated regulation of MT growth speeds or growth lifetimes. We propose that additional molecular motor proteins are likely involved in mediating ECM mechanosensing-induced regulation of MT growth lifetimes during endothelial cell angiogenesis. An important study recently identified that the effects of MT destabilizing enzymes (MCAK and Kif18A) have opposite, time-dependent effects on MT growth dynamics when comparing short-term to longer-term inhibition experiments, and these differences resulted primarily from feedback responses on tubulin auto-regulation (Wordeman et al., 2016). These findings suggest that in the absence (knockdown) of MT destabilizers, cells are able to adapt MT assembly dynamics through modified regulation of tubulin synthesis, which is likely to have effects on any number of MAPs that contribute to the regulation of MT dynamic instability. Because the experiments described in the present study fall within the short-term time frame of MCAK modulation, they should not be influenced by modified tubulin synthesis.
Nevertheless, it remains possible and perhaps even likely that other MAPs and their effects on MT dynamic instability may be modulated via ECM compliance and dimensionality mechanosensing, as well as by short-term modulation of MCAK and myosin-II. Future investigations are necessary to determine if, and which other molecular motor proteins are involved in modulating MT growth dynamics with regional specificity, and to determine how upstream signaling from myosin-II is controlled in order to coordinate additional MAP-mediated regulation of MT dynamics.

MATERIALS AND METHODS

Cells and DNA expression constructs

HUVECs were cultured in endothelial cell basal medium (EBM) supplemented with EGM-MV Single Quots (Lonza) and Penicillin-Streptomycin (Fisher) and maintained at 37°C in 5% CO₂. Transfection with GFP-WT-MCAK and mApple-EB3 cDNAs (final concentration, 1 µg/µl) was completed using Amaxa® Cell Line Nucleofector® Kit V for HUVECs (Lonza), setting A-034, and experiments were performed 3 to 4-hrs later. Transfected cells (300,000-400,000 cells) were seeded in a 35-mm petri dish (Corning) and incubated 1.5 hours to select healthy living cells from cellular debris and dead cells that were the product of the transfection procedure. Cells were treated with (-)-blebbistatin (20 µM; Cayman Chemicals) or (+)-blebbistatin (control) in DMSO (0.001%) for 60-min prior to imaging and maintained in blebbistatin-containing medium + 25 mM HEPES throughout imaging. Blebbistatin-containing medium and blebbistatin-treated samples were protected from light to maintain the pharmacological activity of blebbistatin and avoid phototoxicity from light-induced toxic byproducts (Kolega, 2004; Sakamoto et al., 2005).

2D and 3D cell culture

Pre-activation of coverslips and polyacrylamide conjugation
Square glass coverslips 22 x 22 mm No. 1.5 (Corning) were first activated with 0.5% 3-aminopropyltrimethoxysilane (Acros-organics) in ddH2O for 10 minutes, washed by immersion in ddH2O (6X), and allowed to sit in ddH2O for 10 minutes. Coverslips were dried in a 37°C incubator and allowed to cool to room temperature. Coverslips were then incubated in 0.5% glutaraldehyde aqueous solution (Fisher) in Dulbecco’s Phosphate Buffered Saline (DPBS; Gibco) for 30 minutes, washed in ddH2O (3X, 10 min/wash) and dried at room temperature.

Coverslips were then cross-linked to PA of stiff or compliant elastic moduli (55 kPa or 0.7 kPa, respectively). The various PA elastic moduli were prepared by varying concentrations of 40% acrylamide (Bio-Rad) and 2% Bis (Bio-Rad) in ddH2O before the addition of 10% ammonium persulfate (0.1 g/mL ddH2O; Sigma) and N,N,N’,N’-tetramethylethylenediamine (Sigma) as detailed here:

Recipe 1: Polyacrylamide Stock Solution

<table>
<thead>
<tr>
<th>Reagent (mL)</th>
<th>55kPa (stiff) Polyacrylamide</th>
<th>0.7kPa (soft) Polyacrylamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddH2O</td>
<td>2.25</td>
<td>3.75</td>
</tr>
<tr>
<td>40% Acrylamide</td>
<td>2.25</td>
<td>0.300</td>
</tr>
<tr>
<td>2% Bis-acrylamide</td>
<td>0.500</td>
<td>0.950</td>
</tr>
<tr>
<td>Total Volume</td>
<td>5.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Recipe 2: Polyacrylamide Polymerization

<table>
<thead>
<tr>
<th>Reagent (µL)</th>
<th>55kPa (stiff) Polyacrylamide</th>
<th>0.7kPa (soft) Polyacrylamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddH2O</td>
<td>54.5</td>
<td>124</td>
</tr>
<tr>
<td>* Polyacrylamide Stock Sol.</td>
<td>111.1</td>
<td>41.6</td>
</tr>
<tr>
<td>10% Ammonium Persulfate</td>
<td>0.830</td>
<td>0.830</td>
</tr>
<tr>
<td>TEMED</td>
<td>0.250</td>
<td>0.250</td>
</tr>
<tr>
<td>Total Volume</td>
<td>166.68</td>
<td>166.68</td>
</tr>
</tbody>
</table>
*Note: the Polyacrylamide Stock Solution used in Recipe 2 is the final solution produced in Recipe 1.

Immediately following preparation of the PA solution, 15 µl was pipetted onto a Rain-X washed glass slide and covered with an activated coverslip for 20 minutes to allow for polymerization. After 20 minutes the coverslip was carefully removed from the glass slide with a razor blade by insertion under the edge of the coverslip and with gentle peeling upward. The coverslip was washed with DPBS (3 times) and stored in DPBS at 4°C for less than or equal to 2 weeks as previously described (Myers et al., 2011; Fischer et al., 2012).

Preparation of 2D substrates

To generate 2D ECMs of controlled compliance coverslips with PA were activated with 2 mM Sulfo-SANPAH (Pierce; 1 mg/mL DMSO). Sulfo-SANPAH (250 µl) was added to the top of the coverslip and exposed to UV light (7500 Joules) ~3.5 inches away from 5-365 nm bulbs in a Statagene UV Strata Linker 1800. The activated PA coated coverslip was rinsed (3X) by dipping in a beaker of ddH₂O by holding the corner of the coverslip with a tweezers. The excess ddH₂O on the non-PA side was dried with a kimwipe.

Immediately following activation of the PA-coated coverslip, 15 µl of 300 µg/mL rat tail collagen type I (Corning; final concentration 90 µg/mL) solution was pipetted onto a Rain-X washed glass slide and covered with the activated coverslip and allowed to polymerize for 3-4 hours at 37°C in 5% CO₂. The rat tail collagen solution was prepared immediately prior to addition to the glass slide, stored on ice, and was composed of glutamine free 10X Minimum Essential Medium (9.6 µl MEM; Life Technologies) and 7.5% sodium bicarbonate solution (7 µl; Sigma) and ddH₂O (54 µl). After polymerization the coverslip was carefully removed from the glass slide with a razor blade by insertion under the edge of the coverslip and with gentle peeling upward. The coverslip was washed with DPBS (10 times) and rinsed overnight by rotation at room temperature on a shaker. The next day prior to seeding of transfected cells, the PA coverslips conjugated to collagen were rinsed 3X with DBPS.
Preparation of 3D substrates

To generate 3D ECMs of controlled compliance coverslips with PA were activated 2X with 2 mM Sulfo-SANPAH (Pierce; 1 mg/mL DMSO). Sulfo-SANPAH (250 µl) was added to the top of the coverslip and exposed to UV light (7500 Joules) ~3.5 inches away from 5-365 nm bulbs in a Statagene UV Strata Linker 1800. The activated PA coated coverslip was rinsed (3X) by dipping in a beaker of ddH2O by holding the corner of the coverslip with a tweezers. The excess ddH2O on the non-PA side was dried with a kimwipe.

Immediately following activation of the PA-coated coverslip, 40 µl of 5.3 mg/mL rat tail collagen type I (Corning; final concentration 1.6 mg/mL) solution was pipetted onto a Rain-X washed glass slide and covered with the activated coverslip and allowed to polymerize for 3-4 hours at 37˚C. The rat tail collagen solution was prepared immediately prior to addition to the glass slide, stored on ice, and was composed of glutamine free 10X Minimum Essential Medium (9.6 µl MEM; Life Technologies) and 7.5% sodium bicarbonate solution (7 µl; Sigma) and ddH2O (54 µl). After polymerization the coverslip was carefully removed from the glass slide with a razor blade by insertion under the edge of the coverslip and with gentle peeling upward. The coverslip was washed with DPBS (10 times) and rinsed overnight by rotation at room temperature on a shaker. The next day prior to seeding of transfected cells, the collagen-conjugated PA coverslips were rinsed 3X with DBPS. The coverslip was assembled in a Rose Chamber and transfected cells were seeded onto the coverslip and allowed to adhere for 2 hours. One hour prior to imaging collagen was applied on top of the cells and polymerized at 37˚C/5% CO₂. For blebbistatin treatments HUVECs were exposed to blebbistatin (20 µM) when they were seeded to PA following the 1.5 hour intermediate seeding period in 35-mm petri dishes.

Preparation of Rain-X washed slides

Both sides of a glass slide were wiped with Rain-X wipes to make the surface hydrophobic. Once dry, the slides were wiped down with 100% ethanol (Pharmco-AAPER, 200 Proof) on a kimwipe to remove visible Rain-X. The slides were placed in a slide holder and
rinsed in running ddH₂O for 20 minutes. Following the ddH₂O rinsing the slides were soaked in 100% ethanol (Pharmco-AAPER, 200 Proof) for 20 minutes and then rinsed one final time in ddH₂O (2-3 times) and dried at 37˚C.

Live-cell imaging

Time-lapse images were acquired using a high-resolution spinning disk confocal microscope equipped with 488 nm and 561 nm lasers and a 60x oil immersion objective lens (1.4 NA) for 2-min every 2-sec using a 700-ms exposure time. For blebbistatin-treated samples, time-lapsed images were acquired with only the 561 nm laser for 2-min every 2-sec using a 700-ms exposure time. Following time-lapsed imaging, a single 700-ms exposure with the 488 nm laser was obtained to verify MCAK expression. Because multiple cells from a single coverslip were imaged a different field of view was imaged to avoid photo-inactivation and photo-toxicity from this single 488-nm exposure of blebbistatin-treated samples.

MT dynamics analysis and branching quantification

MT dynamics were visualized by tracking mApple-EB3, a plus-end growth marker, and analyzed using the automated MATLAB based software package plusTipTracker (Matov et al., 2010; Applegate et al., 2011). To identify and distinguish MCAK overexpressing cells from control cells, MCAK overexpression was defined as GFP-WT-MCAK expression that exceeded the median grey scale fluorescence intensity of GFP-WT-MCAK expression within the entire experimental cell population. The number of MT growth tracks was calculated using plusTipTracker software and are presented as the sum of the growth tracks counted for n = 5, which represented the minimum number of cells evaluated in any one representative group or sub-group ROI (whole-cell, branches, control, experimental, untreated, or blebbistatin treated). For cell branching quantification, branches were defined as protrusions extending from the cell >10 µm in length, and branch origin was designated by the angle of greatest curvature on each side of the branch where it protruded from the cell membrane (Myers et al., 2011).
Immunofluorescence

Fixation and processing of samples for immunofluorescence labeling was performed using a paraformaldehyde/glutaraldehyde co-extraction/fixation buffer (PGF-PHEM: 4% Paraformaldehyde, 0.15% Glutaraldehyde, 0.2% Triton X-100 in 60mM PIPES, 27.3mM HEPES, 10mM EGTA, 8.2mM MgSO4, pH = 7.0). PGF-PHEM was added to a coverslip with bound HUVECs at room temperature for 10 minutes, followed by rinsing (3 x 5 min) with 1X phosphate buffered saline (PBS minus Ca2 and Mg2, HyClone), treated with 0.01g/mL NaBH4 in 1X PBS (2 x 15 minutes) to quench reactive aldehydes, rinsed once with 1X PBS and finally blocked with 5% fat-free milk in 1X PBS (1h, Room Temp.). Primary antibodies diluted in 1X PBS and were added and incubated on a rocking platform overnight at 4°C [mouse anti-MCAK (1:1000; Abcam, cat #: ab50778)]. The next morning, the primary antibody was removed and the cells were rinsed 3 x 5 minutes in 1X PBS, followed by incubation in a secondary antibody in 5% fat-free milk [(2hr, 37°C); Cy3 donkey anti-mouse (1:1000, Jackson Immunoresearch, cat #: 715-225-150)]. Cells were then mounted in Dako mounting medium and imaged on the TiE confocal spinning disk microscope described above. For image analysis, a mask was manually traced around the cell boundary and the measured mean fluorescence intensity within the masked boundary was recorded (Nikon Elements software).

Statistical analysis

MT growth tracks were pooled per cell, and the average growth speeds and lifetimes from each cell were taken collectively as one event for each experimental group (n = number of cells). All MT dynamics data were collected from three separate experiments and are displayed as the mean ± SEM. Using GraphPad Prism software, one-way ANOVA tests with post-hoc Tukey’s analysis was performed to determine statistical significance between cells within each experimental group, and between each experimental group separately for MT growth speed and MT growth lifetime. For statistical significance, \(\alpha \) was set to 0.05 yielding a 95% confidence level.
REFERENCES

Figure Legends
Figure 1: In 2D ECMs, MCAK increases MT growth speed and eliminates the sensitivity of MT growth persistence to ECM compliance. (A), color-coded MT growth track sub-population.
overlays from 2 min time-lapse movies of mApple-EB3 (frame rate = 2s) on representative cells for comparison between a cell cultured on 2D stiff (55kPa) or soft (0.7kPa) polyacrylamide gels under conditions of endogenous MCAK expression (left panels) or in MCAK-overexpressing HUVECs (+MCAK; right panels). (B), color scheme for the four subpopulation of MT growth tracks derived by plusTipTracker software and depicted in (A). (C-D), whole cell comparisons of mean MT growth speeds (C) and mean MT growth excursion lifetimes (D) in cells under the conditions described in (A). (E), quantification of total MT growth excursion number in cells under the conditions described in (A). Values shown inside the bars in (C) and (D) are mean values calculated for each condition. Values shown inside the bars of (E) are the total track number for each condition. Red and black-colored horizontal bars are used to designate the experimental conditions meeting statistical significance. Error bars indicate standard error of the mean. 55 kPa control n=9; 55 kPa MCAK n=8; 0.7 kPa control n=10; 0.7 kPa MCAK n=7; *, p<0.05. Scale bar = 20μm.
Figure 2: In 2D ECMs, MCAK-mediated effects on MT growth speed and growth persistence are myosin-II-dependent. (A), color-coded MT growth track sub-population overlays from 2 min time-lapse movies of mApple-EB3 (frame rate = 2s) on representative cells for comparison between a cell cultured on 2D stiff (55kPa) or soft (0.7kPa) polyacrylamide gels under conditions of blebbistatin treatment (20uM) with endogenous MCAK expression (+Blebb; left panels) or in MCAK-overexpressing HUVECs (+MCAK +Blebb; right panels). A color code key for the classification of MT growth excursion subpopulations is shown below. (B-C), whole cell comparisons of mean MT growth speeds (B) and mean MT growth excursion lifetimes (C) in cells under the conditions described in (A). (D), quantification of total MT growth excursion number in cells under the conditions described in (A). (E-F), comparison of MT growth speeds in MCAK-expressing HUVECs cultured on stiff versus compliant ECMs in the absence (untreated) or presence of 20uM blebbistatin (blebbistatin). Values shown inside the bars in (B), (C), (E), and (F) are mean values calculated for each condition. Values shown inside the bars of (D) are the total track number for each condition. Red, green and black-colored horizontal bars are used to designate the experimental conditions meeting statistical significance. Error bars indicate standard error of the mean. 55 kPa control n=11; 55 kPa MCAK n=8; 0.7 kPa control n=6; 0.7 kPa MCAK n=7 (blebbistatin treated in B-D); 55 kPa MCAK n=8; 0.7 kPa MCAK n=7 (untreated in E-F); *, p<0.05. Scale bar = 20μm.
Figure 3: MCAK-mediated regulation of MT dynamics is regionally sensitive to myosin-II contractility within branched protrusions in 2D ECMs. (A-E), data analysis of HUVECs cultured on 2D polyacrylamide ECMs of varying compliance (55kPa and 0.7kPa) in the presence of 20uM blebbistatin (Blebbistatin) or in the absence of blebbistatin (untreated); (A-B), Mean MT growth speeds (A) and mean MT growth lifetimes (B) within branched regions of control versus MCAK overexpressing HUVECs. (C), MT growth track number within branched regions of HUVECs; (D-E), comparison of MT growth speed (C) and MT growth lifetime (D) in MCAK expressing HUVECs. Values shown inside the bars of (A), (B), (D), and (E) are mean values calculated for each condition. Values shown inside the bars of (C) are the total track number for each condition. Red, green and black-colored horizontal bars are used to designate the experimental conditions meeting statistical significance. Error bars indicate standard error of the mean. 55
kPa control n=11, MCAK n=8; 0.7 kPa control n=6, MCAK n=5 (blebbistatin treated); 55 kPa control n=9, MCAK n=8; 0.7 kPa control n=10, MCAK n=7 (untreated); *, p < 0.05.
Figure 4: 3D ECM engagement makes MT growth persistence insensitive to compliance and MCAK. (A), color-coded MT growth track sub-population overlays from 2 min time-lapse movies of mApple-EB3 (frame rate = 2s) on representative cells for comparison between a cell cultured in 3D stiff (55kPa) or soft (0.7kPa) polyacrylamide gels under conditions of endogenous MCAK expression (left panels) or in MCAK-overexpressing HUVECs (+MCAK; right panels). A color code key for the classification of MT growth excursion subpopulations is shown below. (B-C), whole cell comparisons of mean MT growth speeds (B) and mean MT growth excursion lifetimes (C) in cells under the conditions described in (A). (D), quantification of total MT growth excursion number in cells under the conditions described in (A). Values shown inside the bars in (B) and (C) are mean values calculated for each condition. Values shown inside the bars of (D) are the total track number for each condition. Red and black-colored horizontal bars are used to designate the experimental conditions meeting statistical significance. Error bars indicate standard error of the mean. 55 kPa control n=6; 55 kPa MCAK n=7; 0.7 kPa control n=7; 0.7 kPa MCAK n=10; *, p<0.05. Scale bar = 20μm.
Figure 5: In 3D ECMs, MCAK-mediated regulation of MT growth speeds and the number of MT growth events is myosin-II-dependent. (A), color-coded MT growth track sub-population overlays from 2 min time-lapse movies of mApple-EB3 (frame rate = 2s) on representative cells for comparison between a cell cultured on 3D stiff (55kPa) or soft (0.7kPa) polyacrylamide gels under conditions of blebbistatin treatment (20uM) with endogenous MCAK expression (+Blebb; left panels) or in MCAK-overexpressing HUVECs (+MCAK +Blebb; right panels). A color code key for the classification of MT growth excursion subpopulations is shown below. (B-C), whole cell comparisons of mean MT growth speeds (B) and mean MT growth excursion lifetimes (C) in cells under the conditions described in (A). (D), quantification of total MT growth excursion number in cells under the conditions described in (A). (E-F), comparison of MT growth speeds in MCAK-expressing HUVECs cultured on stiff versus compliant ECMs in the absence (untreated) or presence of 20uM blebbistatin (blebbistatin). Values shown inside the bars in (B), (C), (E), and (F) are mean values calculated for each condition. Values shown inside the bars of (D) are the total track number for each condition. Black-colored horizontal bars are used to designate the experimental conditions meeting statistical significance. Error bars indicate standard error of the mean. 55 kPa control n=8; 55 kPa MCAK n=8; 0.7 kPa control n=13; 0.7 kPa MCAK n=9 (blebbistatin treated in B-D); 55 kPa MCAK n= 7; 0.7 kPa MCAK n=10 (untreated in E-F); *, p<0.05. Scale bar = 20µm.
Figure 6: MT growth speed, but not growth persistence is regulated through a MCAK and myosin-II-dependent signaling pathway within branched protrusions in 3D ECMs. (A-E), data analysis of HUVECs cultured on 3D polyacrylamide ECMs of varying compliance (55 kPa or 0.7 kPa) in the presence of 20uM blebbistatin (blebbistatin) or in the absence of blebbistatin (untreated); (A-B), Mean MT growth speeds (A) and mean MT growth lifetimes (B) within branched regions of control versus MCAK overexpressing HUVECs (C), MT growth track number within branched regions of HUVECs; (D-E), comparison of MT growth speed (C) and MT growth lifetime (D) in MCAK expressing HUVECs. Values shown inside the bars of (A), (B), (D), and (E) are mean values calculated for each condition. Values shown inside the bars of (C) are the total track number for each condition. Red, green and black-colored horizontal bars are used to designate the experimental conditions meeting statistical significance. Error bars indicate standard error of the mean. 55 kPa control n=8, MCAK n=8; 0.7 kPa control n=13, MCAK n=9.
(blebbistatin treated); 55 kPa control n=6, MCAK n=7; 0.7 kPa control n=7, MCAK n=10 (untreated); *, p < 0.05.
Figure 7: 3D ECM engagement uncouples MCAK- and myosin-II-mediated regulation of MT growth persistence within branched protrusions. (A-D), whole-cell comparison of 2D versus 3D MT growth speed (A-B) and MT growth lifetime (C-D) in untreated HUVECs (A, C) or in HUVECs treated with 20uM blebbistatin (B, D) under conditions of endogenous MCAK expression (control, black bars) or in MCAK-overexpressing cells (MCAK, red or green bars). (E-H), branched regional comparison of 2D versus 3D MT growth speed (E-F) and MT growth lifetime (G-H) in untreated HUVECs (E, G) or in HUVECs treated with 20uM blebbistatin (F, H) under conditions of endogenous MCAK expression (control, black bars) or MCAK-overexpression (MCAK, red or green bars). Values shown inside the bars are mean values calculated for each condition. Red, green and black-colored horizontal bars designate statistical significance. Error bars indicate standard error of the mean. 55 kPa control n=11, 55 kPa MCAK n=8, 0.7 kPa control n=6, 0.7 kPa MCAK n=5 (whole cell, 2D, blebbistatin treatment). 55 kPa control n=8, 55 kPa MCAK n=8, 0.7 kPa control n=13, 0.7 kPa MCAK n=9 (whole cell, 3D blebbistatin treatment). 55 kPa control n=9, 55 kPa MCAK n=8, 0.7 kPa control n=10, 0.7 kPa MCAK n=7 (whole cell, 2D, untreated). 55 kPa control n=6, 55 kPa MCAK n=7, 0.7 kPa control n=7, 0.7 kPa MCAK n=10 (whole cell, 3D, untreated). 55 kPa control n=11, 55 kPa MCAK n=8, 0.7 kPa control n=6, 0.7 kPa MCAK n=5 (branches, 2D, blebbistatin treatment). 55 kPa control n=8, 55 kPa MCAK n=8, 0.7 kPa control n=13, 0.7 kPa MCAK n=9 (branches, 3D, blebbistatin treatment). 55 kPa control n=9, 55 kPa MCAK n=8, 0.7 kPa control n=10, 0.7 kPa MCAK n=7 (branches, 2D, untreated). 55 kPa control n=6, 55 kPa MCAK n=7, 0.7 kPa control n=7, 0.7 kPa MCAK n=10 (branches, 3D, untreated). *, p<0.05.

Table 1: Quantification of total branch number, fold change in branch number, and mean branch length of HUVECs cultured on 2D type-1 collagen ECMs.
Table 2: Quantification of total branch number, fold change in branch number and mean branch length of HUVECs cultured on 3D type-1 collagen ECMs.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Untreated</th>
<th>Blebbistatin (20 μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>MCAK</td>
</tr>
<tr>
<td>Total branch number</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Fold change in branch number</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mean branch length in μm (SE)</td>
<td>55.80 (13)</td>
<td>36.24 (3)</td>
</tr>
</tbody>
</table>

Table 3: Comparison of total branch number, fold change in branch number and mean branch length of HUVECs cultured on 2D (A, C) versus 3D (B, D) type-1 collagen ECMs.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Untreated</th>
<th>Blebbistatin (20 μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>MCAK</td>
</tr>
<tr>
<td>Total branch number</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Fold change in branch number</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>Mean branch length in μm (SE)</td>
<td>20.90 (1)</td>
<td>25.01 (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Untreated</th>
<th>Blebbistatin (20 μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>MCAK</td>
</tr>
<tr>
<td>Total branch number</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>Fold change in branch number</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mean branch length in μm (SE)</td>
<td>19.66 (0.6)</td>
<td>15.71 (0.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Untreated</th>
<th>Blebbistatin (20 μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>MCAK</td>
</tr>
<tr>
<td>Total branch number</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>Fold change in branch number</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>Mean branch length in μm (SE)</td>
<td>16.45 (0.2)</td>
<td>14.77 (0.4)</td>
</tr>
</tbody>
</table>
55kPa: 2D versus 3D

<table>
<thead>
<tr>
<th>Measurement</th>
<th>2D 55 kPa ECMs</th>
<th></th>
<th>Blebbistatin (20 μM)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Control</td>
<td>MCAK</td>
<td>Control</td>
</tr>
<tr>
<td>Total branch number</td>
<td>2</td>
<td>4</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Fold change in branch number</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mean branch length in μm (SE)</td>
<td>55.80 (13)</td>
<td>36.24 (3)</td>
<td>37.25 (1)</td>
<td>30.48 (1.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>3D 55 kPa ECMs</th>
<th></th>
<th>Blebbistatin (20 μM)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Control</td>
<td>MCAK</td>
<td>Control</td>
</tr>
<tr>
<td>Total branch number</td>
<td>16</td>
<td>29</td>
<td>57</td>
<td>48</td>
</tr>
<tr>
<td>Fold change in branch number</td>
<td>8</td>
<td>7</td>
<td>3.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Mean branch length in μm (SE)</td>
<td>19.66 (0.6)</td>
<td>15.71 (0.5)</td>
<td>25.49 (0.3)</td>
<td>22.55 (0.2)</td>
</tr>
</tbody>
</table>

0.7kPa: 2D versus 3D

<table>
<thead>
<tr>
<th>Measurement</th>
<th>2D 0.7 kPa ECMs</th>
<th></th>
<th>Blebbistatin (20 μM)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Control</td>
<td>MCAK</td>
<td>Control</td>
</tr>
<tr>
<td>Total branch number</td>
<td>8</td>
<td>6</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Fold change in branch number</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mean branch length in μm (SE)</td>
<td>20.90 (1)</td>
<td>25.01 (2)</td>
<td>25.71 (0.7)</td>
<td>21.80 (0.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>3D 0.7 kPa ECMs</th>
<th></th>
<th>Blebbistatin (20 μM)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Control</td>
<td>MCAK</td>
<td>Control</td>
</tr>
<tr>
<td>Total branch number</td>
<td>32</td>
<td>26</td>
<td>66</td>
<td>22</td>
</tr>
<tr>
<td>Fold change in branch number</td>
<td>4</td>
<td>4.3</td>
<td>4.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Mean branch length in μm (SE)</td>
<td>16.45 (0.2)</td>
<td>14.77 (0.4)</td>
<td>25.37 (0.2)</td>
<td>18.49 (0.5)</td>
</tr>
</tbody>
</table>